Effect of the Cation Part of Imidazolium Ionic Liquids on Synthesis of Palladium Particle

팔라듐 입자 제조에 미치는 이미다졸계 이온성액체의 양이온 효과

  • Kim, Chang Soo (Clean Energy Research Center, Korea Institute of Science & Technology) ;
  • Ahn, Byoung Sung (Clean Energy Research Center, Korea Institute of Science & Technology) ;
  • Tae, Hyunman (Department of Chemical Engineering, Seoul National University of Science & Technology) ;
  • Jeon, Seung Hye (Department of Chemical Engineering, Seoul National University of Science & Technology) ;
  • Yoo, Kye Sang (Department of Chemical Engineering, Seoul National University of Science & Technology)
  • 김창수 (한국과학기술연구원, 청정에너지연구센터) ;
  • 안병성 (한국과학기술연구원, 청정에너지연구센터) ;
  • 태현만 (서울과학기술대학교 화공생명공학과) ;
  • 전승혜 (서울과학기술대학교 화공생명공학과) ;
  • 유계상 (서울과학기술대학교 화공생명공학과)
  • Published : 2012.10.10


Palladium particles were synthesized by conventional chemical reduction method with ionic liquids. The size and shape of palladium particles were significantly affected by the cation parts of ionic liquids. This is mainly attributed to the different stabilities of the ionic liquid structure formed by the physical bond between the cation parts. Among ionic liquids with [$BF_{4}$] as an anion part, the hexyl substituent in the cation parts was more effective to synthesize palladium particles with the smaller size and more uniform shape.


  1. M. Fernandez-Garcia, A. Martinez-Arias, L. N. Salamanca, J. M. Coronado, J. A. Anderson, J. C. Conesa, and J. Soria, J. Catal., 187, 474 (1999). https://doi.org/10.1006/jcat.1999.2624
  2. Y. Nishihata, J. Mizuki, T. Akao, H. Tanaka, M. Uenishi, M. Kimura, T. Okamoto, and N. Hamada, Nature, 418, 164 (2002). https://doi.org/10.1038/nature00893
  3. J. M. Thomas, B. F. G. Johnson, R. Raja, G. Sankar, and P. A. Midgley, Acc. Chem. Res., 36, 20 (2003). https://doi.org/10.1021/ar990017q
  4. L. Schlapbach and A. Zuttel, Nature, 414, 353 (2001). https://doi.org/10.1038/35104634
  5. M. T. Reetz and E. Westermann, Angew. Chem, Int. Ed., 39, 165 (2000). https://doi.org/10.1002/(SICI)1521-3773(20000103)39:1<165::AID-ANIE165>3.0.CO;2-B
  6. Y. Li, X. M. Hong, D. M. Collard, and M. A. El-Sayed, Org. Lett., 2, 2385 (2000). https://doi.org/10.1021/ol0061687
  7. S.-W. Kim, M. Kim, W. Y. Lee, and T. Hyeon, J. Am. Chem. Soc., 124, 7642 (2002). https://doi.org/10.1021/ja026032z
  8. R. Narayanan and M. A. El-Sayed, Nano Lett., 4, 1343 (2004). https://doi.org/10.1021/nl0495256
  9. S. E. Habas, H. Lee, V. Radmilovic, G. A. Somorjai, and P. Yang, Nat. Mater., 6, 692 (2007). https://doi.org/10.1038/nmat1957
  10. K. M. Bratlie, H. Lee, K. Komvopoulos, P. Yang, and G. A. Somorjai, Nano Lett., 7, 3097 (2007). https://doi.org/10.1021/nl0716000
  11. C. Wang, H. Daimon, T. Onodera, T. Koda, and S. Sun, Angew. Chem, Int. Ed., 47, 3588 (2008). https://doi.org/10.1002/anie.200800073
  12. Y. Sun and Y. Xia, Science, 298, 2176 (2002). https://doi.org/10.1126/science.1077229
  13. B. Wiley, T. Herricks, Y. Sun, and Y. Xia, Nano Lett., 4, 1733 (2004). https://doi.org/10.1021/nl048912c
  14. F. Kim, S. Connor, H. Song, T. Kuykendall, and P. Yang, Angew. Chem, Int. Ed., 43, 3673 (2004). https://doi.org/10.1002/anie.200454216
  15. B. Wiley, Y. Sun, and Y. Xia, Langmuir, 21, 8077 (2005). https://doi.org/10.1021/la050887i
  16. Y. Xiong, J. Chen, B. Wiley, Y. Xia, S. Aloni, and Y. Yin, J. Am. Chem. Soc., 127, 7332 (2005). https://doi.org/10.1021/ja0513741
  17. Y. Xiong, J. Chen, B. Wiley, Y. Xia, Y. Yin, and Z.-Y. Li, Nano Lett., 5, 1237 (2005). https://doi.org/10.1021/nl0508826
  18. J. Chen, T. Herricks, and Y. Xia, Angew. Chem, Int. Ed., 44, 2589 (2005). https://doi.org/10.1002/anie.200462668
  19. H. Song, F. Kim, S. Connor, G. A. Somorjai, and P. Yang, J. Phys. Chem. B, 109, 188 (2005). https://doi.org/10.1021/jp0464775
  20. D. Seo, J. C. Park, and H. Song, J. Am. Chem. Soc., 128, 14863 (2006). https://doi.org/10.1021/ja062892u
  21. B. J. Wiley, Y. Xiong, Z.-Y. Li, Y. Yin, and Y. Xia, Nano Lett., 6, 765 (2006). https://doi.org/10.1021/nl060069q
  22. Y. Xiong and Y. Xia, Adv. Mater., 19, 3385 (2007). https://doi.org/10.1002/adma.200701301
  23. P. Wasserscheid and W. Keim, Angew. Chem. Int. Ed., 39, 3773 (2000).
  24. T. Welton, Chem. Rev., 99, 2071 (1999). https://doi.org/10.1021/cr980032t
  25. X. Mu, D. G. Evans, and Y. Kou, Catal. Lett., 97, 151 (2004). https://doi.org/10.1023/B:CATL.0000038577.18441.bf
  26. A. P. Umpierre, G. Machado, G. H. Fecher, J. Morais, and J. Dupont, Adv. Synth. Catal., 347, 1404 (2005). https://doi.org/10.1002/adsc.200404313
  27. K. L. Luska and A. Moores, Adv. Synth. Catal., 353, 3167 (2011). https://doi.org/10.1002/adsc.201100551
  28. X. Yuan, N. Yan, S. A. Katsyuba, E. E. Zvereva, Y. Kou, and P. J. Dyson, Phys. Chem. Chem. Phys., 14, 6025 (2012).