Use of Carbon Nanotube Electrode and Squarewave Anodic Stripping Voltammetry for the Detection of Lead Heavy Metal

납 중금속 검출을 위한 탄소나노튜브 전극 및 네모파 양극 벗김 전압전류법 이용

  • Choi, Changkun (Graduate School of Energy and Environment, Seoul National University of Science and Technology) ;
  • Seok, Jonghyuk (Department of Chemical and Environmental Technology, Inha Technical College) ;
  • Kwon, Yongchai (Graduate School of Energy and Environment, Seoul National University of Science and Technology)
  • 최장군 (서울과학기술대학교, 에너지환경대학원) ;
  • 석종혁 (인하공업전문대학, 화공환경과) ;
  • 권용재 (서울과학기술대학교, 에너지환경대학원)
  • Published : 2012.10.10


In this study, we investigate the use of new carbon nanotube paste electrode (CNPE) for promoting the detection of lead (Pb) heavy metal in the a drinkable water, which negatively affects human brain and nerve system. For the evaluations, CNPE is served as a working electrode, while sensitivity and limit of detection (LOD) of Pb are measured in DI and tap water based electrolytes using squarewave anodic stripping voltammetry (SWASV). As a result of that, in the 25~150 ppb range of $Pb^{2+}$ ions, its sensitivity and calculated LOD are $12.85\;{\mu}A/{\mu}M$ and 26 ppb in DI water based 0.1 M $H_{2}SO_{4}$ electrolyte while they are $10.36\;{\mu}A/{\mu}M$ and 38 ppb electrolytes respectively. In addition, experimentally measured LOD values of Pb are 4 ppb and 10 ppb in the two water electrolytes. The stripping of $Pb^{2+}$ ion is also controlled by surface reaction. Our experimental data are then compared with those of other already published references. With the comparison, it is proved that our electrode outperforms other electrodes in terms of the sensitivity and LOD of trace Pb metal.


lead trace metal;anodic stripping voltammetry;carbon nanotube;surface reaction controlled


  1. P. Brousseau, J. Pellerin, Y. Morin, D. Cyr, B. Blakley, and H. Boermans, Toxicology, 142, 145 (1999).
  2. M. L. Fant, M. Nyman, E. Helle, and E. Rudback, Environmental Pollution, 111, 493 (2001).
  3. T. Molina-Holgado, J. M. Pinilla-Macias, and L. Hernandez-Hernandez, Anal. Chim. Acta, 309, 117 (1995).
  4. K. C. Honeychurch, J. P. Hart, and D. C. Cowell, Anal. Chim. Acta, 431, 89 (2001).
  5. K. Wagner, J. W. Strojek, and K. Koziel, Anal. Chim. Acta, 447, 11 (2001).
  6. K. C. Honeychurch, J. P. Hart, D. C. Cowell, and D. W. M. Arrigan, Electroanalysis, 14, 177 (2002).<177::AID-ELAN177>3.0.CO;2-V
  7. R. L. Boeckx, Anal. Chem., 58, 274 (1986).
  8. E. A. Hutton, J. T. Elteren, B. Ogorevc, and M. R. Smyth, Talanta, 63, 849 (2004).
  9. H. Luo, Z. Shi, N. Li, Z. Gu, and Q. Zhuang, Anal. Chem., 73, 915 (2001).
  10. S. Tans, A. Verschueren, and C. Dekker, Nature, 393, 49 (1998).
  11. M. S. Dresselhaus, Nature, 358, 195 (1992).
  12. J. J. Davis, R. J. Coles, H. Allen, and O. Hill, J. Electroanal. Chem., 440, 279 (1997).
  13. J. Wang, "Stripping Analysis", J. Wiley, New York (1988).
  14. I. K. Kim and S. W. Park, Anal. Sci. Tech., 9, 93A-109A (1996).
  15. S. Y. Ly, H. S. Yoo, J. Y. Ahn, and K. H. Nam, Food Chem., 127, 270 (2011).
  16. C. Choi, Y. Jung, N.-J. Kim, D. Pak, K.-Y. Chung, L.-H. Kim, and Y. Kwon, Korean Chem. Eng. Res. - In Press.
  17. A. Manivannan, R. Kawasaki, D. A. Tryk, and A. Fujishima,, Electrochim. Acta, 49, 3313 (2004).
  18. G. H. Hwang, W. K. Han, J. S. Park, and S. G. Kang, Talanta, 76, 301, (2008).
  19. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science, 297, 787 (2002).
  20. X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, Biosen. Bioelectron., 25, 901 (2009).