Controllable Patterning of an Al Surface by a PDMS Stamp

PDMS를 이용한 균일한 알루미늄 표면 패터닝 연구

  • Park, Gayun (Department of Chemical Engineering, Inha University) ;
  • Kim, Kyungmin (Department of Chemical Engineering, Inha University) ;
  • Lee, Hoyeon (Department of Chemical Engineering, Inha University) ;
  • Park, Changhyun (Department of Chemical Engineering, Inha University) ;
  • Kim, Youngmin (SAMYOUNG S&C CO.LTd) ;
  • Tak, Yongsug (Department of Chemical Engineering, Inha University) ;
  • Choi, Jinsub (Department of Chemical Engineering, Inha University)
  • Published : 2012.10.10

Abstract

In this study, etched Al electrodes with ordered arrays of pits and high aspect ratios were successively obtained using a patterned protect layer on the Al surface prepared with soft lithography method. Various methods were applied to fabricate a well ordered protect layer on the Al surface and the difference of etched Al surfaces with and without a protect layer was investigated by using SEM. It was found that the etched Al surfaces were affected by using either a protect layer or a non protect layer. As a result, the Al surface with the well ordered pits could be achieved by protect layer. However, the etched Al with nonuniform pits can be obtained without any protect layers.

Keywords

electrochemical etching;Al surface;PDMS;soft lithography

References

  1. R. S. Alwitt, H. Uchi, T. R. Beck, and R. C. Alkire, J. Electrochem. Soc., 131, 13 (1984). https://doi.org/10.1149/1.2115495
  2. N. Osawa and K. Fukuoka, Corrosion Science, 42, 585 (2000). https://doi.org/10.1016/S0010-938X(99)00117-1
  3. R.-G. Xiao, K.-P. Yan, J.-X. Yan, and J.-Z. Wang, Corrosion Science, 50, 1576 (2008). https://doi.org/10.1016/j.corsci.2008.02.017
  4. Z. H. Hou, J. H. Zeng, J. J. Chen, and S. J. Liao, Mater. Chem. Phys., 123, 625 (2010). https://doi.org/10.1016/j.matchemphys.2010.05.027
  5. Z. Ashitaka, G. E. Thompson, P. Skeldon, G. C. Wood, and K. Shimizu, J. Electrochem. Soc., 146, 1380 (1999). https://doi.org/10.1149/1.1391774
  6. F. Larmat, J. R. Reynolds, and Y.J. Qiu, Synthetic Metals, 79, 229 (1996). https://doi.org/10.1016/0379-6779(96)80198-6
  7. T. Balaji, R. Govindaiah, M. K. Sharma, Y. Purushotham, A. Kumar, and T. L. Prakash, Materials Letters, 56, 560 (2002). https://doi.org/10.1016/S0167-577X(02)00552-9
  8. P. Vasina, T. Zednicek, J. Sikula, and J. Pavelka, Microelectronics Reliability, 42, 849 (2002). https://doi.org/10.1016/S0026-2714(02)00034-3
  9. H. Shin, J.-S. Park, S. Kim, H. S. Jung, and K. S. Hong, Microelectronic Engineering, 77, 270 (2005). https://doi.org/10.1016/j.mee.2004.11.008
  10. H. Kishi, Y. Mizuno, and H. Chazono, Jpn. J. Appl. Phys., 42, 1 (2003). https://doi.org/10.1143/JJAP.42.1
  11. M. Pollet, S. Marinel, and G. Desgardin, Journal of the European Ceramic Society, 24, 119 (2004). https://doi.org/10.1016/S0955-2219(03)00122-5
  12. P. J. Harrop and D. S. Campbell, Thin Solid Films, 2, 273 (1968). https://doi.org/10.1016/0040-6090(68)90034-5
  13. K. Aoki, I. Murayama, Y. Fukuda, and A. Nishimura, Jpn. J. Appl. Phys., 36, L690 (1997). https://doi.org/10.1143/JJAP.36.L690
  14. Y. Liu, T. Cui, and K. Varahramyan, Solid-State Electronics, 47, 811 (2003). https://doi.org/10.1016/S0038-1101(02)00392-1
  15. O. G. Vendik and L. T. Ter-Martirosyan, Tech. Phys., 44, 954 (1999). https://doi.org/10.1134/1.1259412
  16. J. Kang, Y. Shin, and Y. Tak, Electrochimica Acta, 51, 1012 (2005). https://doi.org/10.1016/j.electacta.2005.04.070
  17. M. Baumgartner and H. Kaesche, Corrosion Science, 31, 231 (1990). https://doi.org/10.1016/0010-938X(90)90112-I
  18. K. R. Hebert and R. C. Alkire, J. Electrochem. Soc., 135, 2147 (1988).
  19. K. Hebert and R. Alkire, J. Electrochem. Soc., 135, 2447 (1988). https://doi.org/10.1149/1.2095356
  20. D. Goad, J. Electrochem. Soc., 144, 1965 (1997).
  21. T. Fukushima, K. Nishio, and H. Masuda, Electrochem. Solid-State Lett., 13, C17 (2010). https://doi.org/10.1149/1.3388511
  22. T. Fukushima, K. Nishio, and H. Masuda, J. Electrochem. Soc., 157, C137 (2010). https://doi.org/10.1149/1.3308594
  23. K. Nishio, T. Fukushima, and H. Masuda, Electrochem. Solid-State Lett., 9, B39 (2006). https://doi.org/10.1149/1.2214364
  24. K. Nishio, T. Fukushima, A. Takeda, and H. Masuda, Electrochem. Solid-State Lett., 10, C60 (2007). https://doi.org/10.1149/1.2767531
  25. J. P. Rolland, E. C. Hagberg, G. M. Denison, K. R. Carter, and J. M. De Simone, Angew. Chem., 116, 5920 (2004). https://doi.org/10.1002/ange.200461122
  26. T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, Langmuir, 18, 5314 (2002). https://doi.org/10.1021/la020169l
  27. X.-M. Zhao, Y. Xia, and G. M. Whitesides, J. Mater. Chem., 7, 1069 (1997). https://doi.org/10.1039/a700145b
  28. D. Qin, Y. Xia, and G. M. Whitesides, Nature Protocols, 5, 491 (2010). https://doi.org/10.1038/nprot.2009.234
  29. K. Y. Suh, J. Seong, A. Khademhosseini, P. E. Laibinis, and R. Langer, Biomaterials, 25, 557 (2004). https://doi.org/10.1016/S0142-9612(03)00543-X
  30. R. S. Kane, S. Takayama, E. Ostuni, D. E. Ingber, and G. M. Whitesides, Biomaterials, 20, 2363 (1999). https://doi.org/10.1016/S0142-9612(99)00165-9