Characterization of Arthrospira platensis Mutants Generated by UV-B Irradiation

자외선 조사에 의해 유도된 미세조류 Arthrospira platensis 변이주의 특성

  • Park, Hyun-Jin (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University) ;
  • Kim, Young-Hwa (Department of Pharmaceutical Engineering, College of Medical and Life Science, Silla University) ;
  • Lee, Jae-Hwa (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University)
  • 박현진 (신라대학교 의생명과학대학 생명공학과) ;
  • 김영화 (신라대학교 의생명과학대학 제약공학과) ;
  • 이재화 (신라대학교 의생명과학대학 생명공학과)
  • Published : 2012.10.10

Abstract

Arthrospira platensis (A. platensis) is an economically important filamentous microalgae. The isolation of mutants by chemical or physical mutagen is a clue for the strain improvement. In this study, effects of ultraviolet-B (UV-B) radiation on A. platensis were investigated. Cells (or microalgae) were exposed to UV-B (15 Watt, 254 nm) for 1, 3, 5, and 10 min, and resulting mutants were designated UM1, UM3, UM5, and UM10, respectively. Especially, the lipid content of UM5 mutant was considerably increased by 8~11 fold compared to that of wild types. Moreover, the carotenoid content and antioxidant enzyme (peroxidase and superoxide dismutase) activity were increased. It was shown that UV-induced mutants can accumulate bioactive compounds, which will be useful for the industrial production of valuable products.

Keywords

microalgae;Arthrospira platensis;UV-B;mutant

References

  1. S. J. Dong, K. W. Kim, and S. Y. Cho, Kor. J. Fish. Aquat. Sci., 44, 1 (2011).
  2. H. M. Oh, A. R. Choi, and T. I. Mheen, Kor. J. Microbiol. Biotechnol., 31, 95 (2003).
  3. G. G. Choi, M. S. Bae, J. S. Park, B. J. Park, C. Y. Ahn, and H. M. Oh, Kor. J. Microbiol. Biotechnol., 35, 45 (2007).
  4. S. H. Cha, M. J. Kim, H. Y. Yang, C. B. Jin, Y. J. Jeon, T. Oda, and D. K. Kim, Kor. J .Fish Aquat Sci., 43, 437 (2010).
  5. B. H. Jo and H. J. Cha, KSBB J., 25, 109 (2010).
  6. P. Spolaore, C. J. Cassan, E. Duran, and A. Isambert, J. Biosci. Bioeng., 1, 87 (2006).
  7. K. D. Sung, J. H. Ann, J. Y. Lee, S. J. Ohh, and H. Y. Lee, Kor. J. Biotechnol. Bioeng., 10, 401 (1995).
  8. B. J. Park, B. M. Kim, S. H. Shim, J. D. Kim, and C. G. Lee, Kor. J. Microbiol. Biotechnol., 34, 136 (2006).
  9. C. Yoo, C. J. Kim, G. G. Choi, C. Y. Ahn, J. S. Choi, and H. M. Oh, Microbiol. Soc. Kor., 45, 268 (2009).
  10. J. C. Schneider, A. Livne, A. Sukenik, and P. G. Roessler, Cell culture biotechnol., 40, 807 (1995).
  11. R. Chaturvedi, S. R. Uppalapati, M. A. Alamsjah, and Y. Fujita, J. Appl. Phycol., 16, 135 (2004). https://doi.org/10.1023/B:JAPH.0000044826.70360.8e
  12. B. S. Kamath, R. Vidhyavathi, R. Sarada, and G. A. Ravishankar, Bioresour. Technol., 99, 8667 (2008). https://doi.org/10.1016/j.biortech.2008.04.013
  13. B. F. Cordero, I. Obraztsova, I. Couso, R. Leon, M. A. Vargas, and H. Rodriguez, Mar. Drugs, 9, 1607 (2011). https://doi.org/10.3390/md9091607
  14. T. J. Han, Kor. J. Environ. Biol., 17, 1 (1999).
  15. Y. M. Kim, M. R. Kim, T. H. Kwon, J. M. Ha, and J. H. Lee, J. Kor. Ind. Eng. Chem., 20, 285 (2009).
  16. J. Y. Kim, H. Joo, and J. H. Lee, Appl. Chem. Eng., 22, 301 (2011).
  17. W. Chen, M. Sommerfeld, and Q. Hu, Bioresour. Technol., 102, 135 (2011). https://doi.org/10.1016/j.biortech.2010.06.076
  18. S. I. Lee, J. Y. Park, J. G. Jung, D. G. Lee, S. H. Lee, J. M. Ha, B. J. Ha, and J. H. Lee, J. Life Sci., 15, 847 (2005). https://doi.org/10.5352/JLS.2005.15.6.847
  19. A. H. Teramura, L. H. Ziska, and A. E. Sztein, Physiol. Plant., 83, 373 (1991). https://doi.org/10.1111/j.1399-3054.1991.tb00108.x
  20. S. C. Singh, R. P. Sinha, and D. P. Hader, Acta Protozool., 41, 297 (2002).
  21. J. N. Rosenberg, G. A. Oyler, L. Wilkinson, and M. J. Betenbaugh, Curr. Op. Biotechnol., 19, 430 (2008). https://doi.org/10.1016/j.copbio.2008.07.008
  22. S. Boussiba, Physiol Plant., 108, 111 (2000). https://doi.org/10.1034/j.1399-3054.2000.108002111.x