A Study on the Decomposition of Dissolved Ozone and Phenol using Ozone/Activated Carbon Process

오존/활성탄 공정을 이용한 용존 오존 및 페놀의 분해에 관한 연구

  • Choi, Jae Won (School of Chemical Engineering, University of Ulsan) ;
  • Lee, Hak Sung (School of Chemical Engineering, University of Ulsan)
  • 최재원 (울산대학교 화학공학부) ;
  • 이학성 (울산대학교 화학공학부)
  • Published : 2012.10.10


The catalytic effect induced by activated carbon (AC) was evaluated during the phenol treatment using an ozone/AC ($O_{3}/AC$) process. In the case of the addition of AC to the ozone only process, the decomposition efficiency of dissolved ozone and phenol increased with increasing the amount of AC input. It was that the OH radical generated from the decomposition of dissolved ozone by AC had an effect on the removal of phenol. It was shown as the catalytic effect of AC ([$\Delta$phenol]/$[{\Delta}O_{3}]_{AC}$) in this study. The maximum catalytic effect was approximately 2.13 under 10~40 g/L of AC input. It approached to the maximum catalytic effect after 40 min of reaction with 10 and 20 g/L of AC input, while the reaction time reached to the maximum catalytic effect under 30 and 40 g/L of AC input was approximately 20 min. Moreover, the removal ratios of total organic carbon (TOC) for ozone only process and ozone/AC process were 0.23 and 0.63 respectively.


phenol;ozonation;ozone/activated carbon process;OH radical


  1. K. H. Lee, D. Y. Jang, and T. J. Park, J. Environ. Sci., 5, 51 (1996).
  2. B. C. Lee, S. H. Lee, and C. H. Lee, J. KSEE, 29, 1085 (2007).
  3. J. D. Park, J. H. Seo, and H. S. Lee, J. Environ. Health Sci., 31, 404 (2005).
  4. W. H. Glaze and J. W. Kang, Ind. Eng. Chem. Res., 28, 1573 (1989). https://doi.org/10.1021/ie00095a001
  5. W. H. Glaze, Environ. Sci. Technol., 21, 224 (1987). https://doi.org/10.1021/es00157a001
  6. H. Tomiyasu, H. Fukutomi, and G. Gordon, Inorg. Chem., 24, 2962 (1985). https://doi.org/10.1021/ic00213a018
  7. C. G. Hewes and R. P. Davison, AIChE J., 17, 141 (1971). https://doi.org/10.1002/aic.690170129
  8. B. S. Oh, K. S. Kim, and J. W. Kang, J. Korean Soc. Water Quality, 21, 153 (2005).
  9. J. W. Choi, J. Y. Yoon, J. D. Park, and H. S. Lee, Appl. Chem. Eng., 23, 302 (2012).
  10. S. J. Song, B. S. Oh, K. S. Kim, E. T. Lee, S. J. Na, and J. W. Kang, J. KSEE, 26, 52 (2004).
  11. H. Bader and J. Hoigne, Water Res., 15, 449 (1981). https://doi.org/10.1016/0043-1354(81)90054-3
  12. U. Jans and J. Hoigne, Ozone Sci. Eng., 20, 67 (1998). https://doi.org/10.1080/01919519808547291
  13. S. H. Lin and C. L. Lai, Water Res., 34, 763 (2000). https://doi.org/10.1016/S0043-1354(99)00214-6
  14. B. Legube and N. K. V. Leitner, Catal. Today, 53, 61 (1999). https://doi.org/10.1016/S0920-5861(99)00103-0
  15. J. Hoigne and H. Bader, Water Res., 17, 173 (1983). https://doi.org/10.1016/0043-1354(83)90098-2
  16. J. Hoigne and H. Bader, Water Res., 17, 185 (1983). https://doi.org/10.1016/0043-1354(83)90099-4
  17. G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross, J. Phys. Chem. Data, 17, 513 (1988). https://doi.org/10.1063/1.555805
  18. M. S. Elovitz and U. Gunten, Ozone Sci. Eng., 21, 239 (1999). https://doi.org/10.1080/01919519908547239
  19. S. D. Chang and P. C. Singer, J. AWWA, 83, 71 (1991).
  20. J. P. Gould and W. J. Jr. Weber, J. WPCF, 48, 47 (1976).
  21. J. Staehelln and J. Hoigne, Environ. Sci. Technol., 19, 1206 (1985). https://doi.org/10.1021/es00142a012