Effect of Vanadium Oxide Loading on SCR Activity and $SO_2$ Resistance over $TiO_2$-Supported $V_2O_5/TiO_2$ Commercial De-NOx Catalysts

상용 $V_2O_5/TiO_2$ 촉매의 바나듐 함량이 SCR 반응성과 $SO_2$ 내구성에 미치는 영향

  • Park, Kwang Hee (Department of Environmental Energy Systems Engineering, Graduate School of Kyonggi University) ;
  • Cha, Wang Seog (Department of Environmental Engineering, Kunsan National University)
  • 박광희 (경기대학교 일반대학원 환경에너지시스템공학과) ;
  • 차왕석 (군산대학교 환경공학과)
  • Published : 2012.10.10

Abstract

We investigated vanadium (V) loading effects on selective catalytic reduction (SCR) activity and $SO_2$ resistance using commercial SCR catalysts applied on a power plant and incinerator with different amounts of V loading. These catalysts were characterized using XRD, Raman, ICP, BET analysis and found to contain $TiO_2$ (anatase) supported $V_2O_5$ added $WO_3$ and $SiO_2$. The SCR activity of the catalysts increased by increasing either the $V_2O_5$ or the $WO_3$ loading amounts; the SCR activity of the catalysts added $WO_3$ is higher than that of $WO_3$-free catalysts. As the V loading amount in the catalyst increased, the $SO_2$ durability decreased. The $V_2O_5$ supported $TiO_2$ catalyst added $WO_3$ and $SiO_2$ inhibits the deactivation process by $SO_2$. The $SO_2$ resistance of catalysts added $SiO_2$ is higher than that of catalysts added $WO_3$.

Keywords

SCR of NO by $NH_3$;$V_2O_5/TiO_2$ catalyst;effect of $SO_2$;$SiO_2$;$WO_3$

References

  1. H. Bosch and F. Janssen, Catal. Today, 2, 369 (1988). https://doi.org/10.1016/0920-5861(88)80002-6
  2. L. J. Alemany and F. Berti, Appl. Catal. B, 10, 299 (1996). https://doi.org/10.1016/S0926-3373(96)00032-X
  3. S. M. Cho, Chem. Eng. Prog. Air Pollut. Control, 90, 39 (1994).
  4. S. C. Wood, Chem. Eng. Prog. Air Pollut. Control, 90, 33 (1994).
  5. H. H. Phil, M. P. Reddy, P. A. Kumar, L. K. Ju, and J. S. Hyo, Appl. Catal. B, 78, 301 (2008). https://doi.org/10.1016/j.apcatb.2007.09.012
  6. K. H. Park, J. Y. Lee, S. H. Hong, S. H. Choi, and S. C. Hong, J. Korean Ind. Eng. Chem., 19, 376 (2008).
  7. I. E. Wachs, Catal. Today, 27, 437 (1996). https://doi.org/10.1016/0920-5861(95)00203-0
  8. I. Giakoumelou, C. Fountzoula, C. Kordulis, and S. Boghosian, J. Catal., 239, 1 (2006). https://doi.org/10.1016/j.jcat.2006.01.019
  9. P. G. W. A. Kompio, A. Bruckner, F. Hipler, G. Auer, E. Loffler and W. Grunert, J. Catal., 286 237 (2012). https://doi.org/10.1016/j.jcat.2011.11.008
  10. J. P. Dunn, P. R. Koppula, H. G. Stenger, and I. E. Wachs, Appl. Catal. B, 19, 103 (1998). https://doi.org/10.1016/S0926-3373(98)00060-5
  11. G. D. Panagiotou, T. Petsi, K. Bourikas, C. Kordulis, and A. Lycourghiotis, J. Catal., 262, 266 (2009). https://doi.org/10.1016/j.jcat.2009.01.003
  12. T. Petsi, G. D. Panagiotou, C. S. Garoufalis, C. Kordulis, P. Stathi, Y. Deligiannakis, A. Lycourghiotis, and K. Bourikas, Chem. Eur. J., 15, 13090 (2009). https://doi.org/10.1002/chem.200900760
  13. K. Bourikas, J. Stavropoulos, C. S. Garoufalis, C. Kordulis, T. Petsi, and A. Lycourghiotis, Chem. Eur. J., 17, 1201 (2011). https://doi.org/10.1002/chem.201001370
  14. T. Petsi, G. D. Panagiotou, K. Bourikas, C. Kordulis, G. A. Voyiatzis, and A. Lycourghiotis, Chem. Cat. Chem., 3, 1072 (2011).
  15. G. D. Panagiotou, T. Petsi, K. Bourikas, A. G. Kalampounias, S. Boghosian, C. Kordulis, and A. Lycourghiotis, J. Phys. Chem. C, 114, 11868 (2010). https://doi.org/10.1021/jp101333t
  16. L. Lietti, P. Forzatti, and F. Bregani, Ind. Eng. Chem. Res., 35, 3884 (1996). https://doi.org/10.1021/ie960158l
  17. T. S. Joakim, R. Thogersen, and N. White, Ammonium bisulphate inhibition of SCR catalysts, Haldor Topsoe Inc.
  18. M. Kobayashi, R. Kuma, S. Masaki, and N. Sugishima, Appl. Catal. B, 60, 173 (2005). https://doi.org/10.1016/j.apcatb.2005.02.030