Study on Anti-Washout Properties and Shear-Thickening Behaviors of Surfactant Added Cement Grouts

계면활성제 혼화제를 첨가한 시멘트 그라우트의 수중 불분리 특성 발현과 점도 증가 효과 연구

  • Jang, In-Kyu (Department of Chemical Engineering, Hoseo University) ;
  • Seo, Seung-Ree (Department of Medical Biomaterials Engineering, Kangwon National University) ;
  • Park, Seung-Kyu (Department of Chemical Engineering, Hoseo University)
  • 장인규 (호서대학교 화학공학과) ;
  • 서승리 (강원대학교 의생명과학대학 의생명소재공학과) ;
  • 박승규 (호서대학교 화학공학과)
  • Published : 2012.10.10

Abstract

Concrete, the mixture of cement, sand, gravel and water, is a suspension substance extensively used to construct building materials. When a concrete mortar is applied to the underwater construction, the rheology of concrete is of great importance to its flow performance, placement, anti-washout and consolidation. In this research, the anti-washout and rheological properties of concrete have been investigated with concrete admixtures prepared by adding anionic surfactants, cationic surfactants, and polymeric thickeners. The concrete mortar formulated by pseudo-polymeric systems with the electrostatic association of anionic and cationic surfactants, showed high viscosities and suitable anti-washout properties, but poor pumpabilities. The addition of poly methyl vinyl ether to the mixed surfactant system exhibits synergistic effects by improving the concrete mortar properties of the concrete mortar such as fluidity, visco-elastic property, self-leveling, and anti-washout.

Keywords

concrete admixture;anti-washout;viscoelastic;fluidity;mixed surfactants

References

  1. A. Yahia, Cem. Concr. Res., 41, 230 (2011). https://doi.org/10.1016/j.cemconres.2010.11.004
  2. H. Okamura and M. Ouchi, J. of Advanced Concr. Technol., 1, 5 (2003). https://doi.org/10.3151/jact.1.5
  3. A. Yahia and K. H. Khayat, Cem. Concr. Res., 31, 749 (2001). https://doi.org/10.1016/S0008-8846(01)00496-3
  4. A. Umar and A. Al-Tamimi, Jordan J. of Civil Engineering, 5, 1 (2011).
  5. D. Feys, R. Verhoeven, and G. D. Schutter, Cem. Concr. Res., 38, 920 (2008). https://doi.org/10.1016/j.cemconres.2008.02.008
  6. D. G. Shin, Y. H. Song, and C. T. Lee, J. Korean Ind. Eng. Chem., 16, 267 (2005).
  7. U. S. Patent 8,105,500 B2 (2012).
  8. M. Lachemi, K. M. A. Hossain, V. Lambros, P. C. Nkinamubanzi, and N. Bouzoubaa, Cem. Concr. Res., 34, 917 (2004). https://doi.org/10.1016/j.cemconres.2003.10.024
  9. Y. H. Kim, Appl. Chem. Eng., 21, 457 (2010).
  10. W. C. Jau and C. T. Yang, Cem. & Concr. Composites, 32, 450 (2010). https://doi.org/10.1016/j.cemconcomp.2010.01.001
  11. K. H. Khayat and J. Assaad, ACI Mater. J., 100, 185 (2003).
  12. V. H. Nguyen, S. Remond, and J. L. Gallias, Cem. Concr. Res., 41, 292 (2011). https://doi.org/10.1016/j.cemconres.2010.11.015
  13. S. H. Bae, J. I. Park, and T. D. Kim, J. of Korean Soc. of Urban Environ, 10, 259 (2010).
  14. H. El-Chabib, M. Nehdi, and M. Sonebi, ACI Mater. J., 100, 165 (2003).
  15. J. J. Assaad and C. A. Issa, Construction and Building Mater., 30, 667 (2012). https://doi.org/10.1016/j.conbuildmat.2011.12.047
  16. C. F. Ferraris, J. Res. Natl. Inst. Stand. Technol., 104, 461 (1999). https://doi.org/10.6028/jres.104.028
  17. E. H. Seo, D. Y. Lee, J. K. Lee, and J. H. Kim, J. Korean Ind. Eng. Chem., 8, 673 (1997).
  18. Z. Li, Cem. Concr. Res., 37, 1308 (2007). https://doi.org/10.1016/j.cemconres.2007.05.001
  19. G. Kume, M. Galloti, and G. Nunes, J. Surfact. Deterg., 11, 1 (2008). https://doi.org/10.1007/s11743-007-1047-1
  20. A. Upadhyaya, E. J. Acosta, J. F. Scamehorn, and D. A. Sabatini, J. Surfact. Deterg., 10, 269 (2007). https://doi.org/10.1007/s11743-007-1045-3
  21. A. Upadhyaya, E. J. Acosta, J. F. Scamehorn, and D. A. Sabatini, J. Surfact. Deterg., 9, 169 (2006). https://doi.org/10.1007/s11743-006-0387-6