Preparation and Characterizations of Complex Composed of ${\beta}$-Cyclodextrin Polymer/Cinnamic Acid

베타-사이클로 덱스트린 중합체/신남산 복합체의 제조 및 특성 연구

  • Mok, Eun Young (College of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University) ;
  • Cha, Hyun Ju (College of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University) ;
  • Kim, Jin-Chul (College of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University)
  • 목은영 (강원대학교 의생명과학대학) ;
  • 차현주 (강원대학교 의생명과학대학) ;
  • 김진철 (강원대학교 의생명과학대학)
  • Published : 2012.10.10

Abstract

$\beta$-cyclodextrin ($\beta$-CD) polymers were prepared in a strong alkali condition solution (NaOH solution 30% (w/v)) using epichlorohydrin (EPI) as a cross-linker, and the molar ratio of EPI to $\beta$-CD was 10 : 1. The $\beta$-CD content in $\beta$-CD polymers is about 52%. In order to get the photo-responsible and pH-responsible, cinnamic acid was added to be inserted into the cavities of $\beta$-CD due to the hydrophobic interaction. The complex formation was confirmed using transmission electron microscope. The dimerization degree of complexes increased under UV irradiation at $\lambda$ = 365 nm but decreased under the UV irradiation at $\lambda$ = 254 nm. Dynamic light scattering analysis of particle sizes showed that the sizes of complexes did not change with different UV wavelength. Moreover, the complexes were pH-responsible because of the carboxyl group of cinnamic acid, but the size and zeta potential of the complex did not change in strong acid and alkali conditions.

Keywords

${\beta}$-cyclodextrin;cinnamic acid;hydrophobic interaction;UV responsive

References

  1. P. Chivukula, K. Dusek, D. Wang, M. Duskova-Smrckova, P. Kopeckova, and J. Kopecek, Biomaterials, 27, 1140 (2006). https://doi.org/10.1016/j.biomaterials.2005.07.020
  2. X. Yang and J. C. Kim, Biotechnol. Bioeng., 106, 295 (2010).
  3. B. Yao, C. Yang, K. Zhang, C. Ni, H. Song, and Z. Ni, M. Chen. Mater sci-poland, 27, 319 (2009).
  4. A. Garcia, M. Marquez, T. Cai, R. Rosario, Z. Hu, D. Gust, M. Hayes, S. A. Vail, and C. D. Park, Langmuir, 23, 224, (2007). https://doi.org/10.1021/la061632n
  5. D. Shi, M. Matsusaki, T. Kaneko, and M. Akashi, Macromolecules, 41, 8167 (2008). https://doi.org/10.1021/ma800648e
  6. M. Pattabiraman, L. S. Kaanumalle, A. Natarajan, and V. Ramanurthy, Langmuir, 22, 7605 (2006). https://doi.org/10.1021/la061215a
  7. A. Rosso, S. Ferrarotti, M. V. Miranda, N. Krymkiewichz, B. C. Nudel, and O. Cascone, Biotechnol. Lett., 27, 1171 (2005). https://doi.org/10.1007/s10529-005-8654-6
  8. E. Efmorfopoulou and P. Rodis, Chem. Nat. Compd., 40, 362 (2004). https://doi.org/10.1023/B:CONC.0000048248.51418.12
  9. A. Kokkinou, S. Makedonopoulou, and D. Mentzafos, Carbohydr. Res., 328, 135, (2000). https://doi.org/10.1016/S0008-6215(00)00091-4
  10. A. Buvari-barcza and L. Barcza, J. Inclusion Phenom. Macrocyclic Chem., 36, 355 (2000). https://doi.org/10.1023/A:1008007425732
  11. E. Renard, A. Deratani, G. Volet, and B. Sebille, Eur. Polym. J., 33, 49 (1997). https://doi.org/10.1016/S0014-3057(96)00123-1
  12. C. Basappa, P. Rao, D. N. Rao, and S. Divakar, Int. J. Food Sci. Technol., 33, 517 (1998). https://doi.org/10.1046/j.1365-2621.1998.00216.x
  13. M. S. Lee and J. C. Kim, J. Appl. Polym. Sci., 124, 4339 (2012). https://doi.org/10.1002/app.35411