Study of Equilibrium, Kinetic and Thermodynamic Parameters about Fluorescein Dye Adsorbed onto Activated Carbon

활성탄을 이용한 플루오레세인 염료 흡착에 대한 평형, 동력학 및 열역학 파라미터의 연구

  • Lee, Jong-Jib (School of Chemical Engineering, Kongju National University) ;
  • Um, Myeong Heon (School of Chemical Engineering, Kongju National University)
  • 이종집 (공주대학교 화학공학부) ;
  • 엄명헌 (공주대학교 화학공학부)
  • Published : 2012.10.10

Abstract

The paper includes the utlization of an activated carbon as a potential adsorbent to remove a hazardous fluorescein dye from an aqueous solution. Batch adsorption experiments were carried out for the removal of fluorescein dyes using a granular activated carbon as an adsorbent. The effects of various parameters such as pH, amount of adsorbent, contact time, initial concentration and temperature of the adsoprtion system were investigated. The experimental results revealed that activated carbon exhibit high efficiencies to remove fluorescein dyes from the aqueous solution. The equilibrium process can be well described by Freundlich isotherm in the temperature range from 298 K to 318 K. From adsorption kinetic experiments, the adsorption process followed a pseudo second order kinetic model, and the adsorption rate constant ($k_2$) decreased with increasing the initial concentration of fluorescein. The free energy of adsorption ${\Delta}G^0$), enthalpy ${\Delta}H^0$), and entropy (${\Delta}S^0$) change were calculated to predict the nature adsorption. The estimated values for ${\Delta}G^0$ were -17.11~-20.50 kJ/mol over an activated carbon at 250 mg/L, indicated toward a spontaneous process. The positve value for ${\Delta}H^0$, 33.2 kJ/mol, indicates that the adsorption of fluorescein dyes on an activated carbon is an endothermic process.

Keywords

fluorescein;activated carbon;adsorption;adsorption kinetics;adsorption equilibrium

References

  1. Y. M. Kim, Dicer Report Topic Review, 9, 1 (2009).
  2. V. Fineschi, G. Monasterolo, R. Rosi, and E. Turillazzi, Forensic Sci. Int., 100, 137 (1999). https://doi.org/10.1016/S0379-0738(98)00205-9
  3. S. Budavari, The Merck Index, Merck & Co. Inc., Rahway, 651 (1996).
  4. H. Q. Qian, et. al., Appl. Surf. Sci., 256, 2686 (2010). https://doi.org/10.1016/j.apsusc.2009.10.056
  5. C. A. M. Zomerdijk, et. al., Biotechnol. Bioeng., 87, 658 (2004). https://doi.org/10.1002/bit.20167
  6. S. Pirillo, et. al., Quim. Nova., 32, 1239 (2009). https://doi.org/10.1590/S0100-40422009000500030
  7. J. J. Lee, J. Kor. Soc. Water Sci. Technol., 18, 37 (2010).
  8. I. A. W. Tan, A. L. Ahmad, and B. H. Hameed, J. Hazard. Mater., 154, 337 (2008). https://doi.org/10.1016/j.jhazmat.2007.10.031
  9. B. H. Fukukawa, Donghwa Technology, 69 (2003).
  10. A. Ozcan and A. S. Ozcan, J. Hazard Mater., B125, 252 (2005).
  11. A. Mital, L. Kurup, and V. K. Gupta, J. Hazard Mater., B117, 171 (2005).
  12. P. Chingombe, B. Saha, and R. J. Wakeman, J. Colloid Interf. Sci., 302, 408 (2006). https://doi.org/10.1016/j.jcis.2006.06.065
  13. Q. Shi, J. Zhang, C. Zhang, W. Nie, B. Zhang, and H. Zhang, J. Colloid Interf. Sci., 343, 188 (2010). https://doi.org/10.1016/j.jcis.2009.08.021
  14. P. Sivakumar and P. N. Palanisamy, Int. J. Chem. Tech. Res., 1, 502 (2009).
  15. J. J. Lee, Appl. Chem. Eng., 22, 224 (2011).
  16. G. McKay, M. E. Guendi, and M. Nassar, Water Res., 21, 1513 (1987). https://doi.org/10.1016/0043-1354(87)90135-7
  17. J. Zhang, Q. Shi, C. Zhang, J. Xu, B. Zhai, and B. Zhang, Bioresour. Technol., 99, 8974 (2008). https://doi.org/10.1016/j.biortech.2008.05.018
  18. H. Nollet, M. Roels, P. Lutgen, P. Van der Meeren, and W. Verstraete, Chemosphere, 53, 655 (2003). https://doi.org/10.1016/S0045-6535(03)00517-4
  19. M. J. Jaycock and G. D. Parfitt, Chemistry of Interfaces, Ellis Horwood Ltd., Chichester (1981).
  20. M. T. Sulak, E. Demirbas, and M. Kobya, Biosour. Technol., 98, 2590 (2007). https://doi.org/10.1016/j.biortech.2006.09.010