Application of CV Cycling to the Activation of the Polymer Electrolyte Membrane Fuel Cell

고분자 전해질막 연료전지의 활성화를 위한 CV 활성화법

  • Cho, Ki-Yun (Environment & Energy Exam Division, Korean Intellectual Property Office) ;
  • Jung, Ho-Young (Department of Environmental Engineering, Chonnam National University)
  • Published : 2012.10.10

Abstract

The activation process of the membrane-electrode assembly (MEA) is important for the mass production of the polymer electrolyte membrane fuel cell. The conventional activation process for the MEA requires excessive time and hydrogen gas and it might become the barrier for the commercialization of the fuel cell. The conventional activation process is based on hydrolysis of ion conducting membrane. In the study, we suggest the cyclic voltammetry (CV) technique as an on-line activation process and the CV activation process consists of two steps : 1) the humidification of the polymer electrolyte membrane and the electrode with 100% RH humidified nitrogen ($N_{2}$) gas, and 2) the removal step of the oxide layer on the surface of the Pt catalyst with CV cycling. The cycling reduces the activation time of the MEA by 2.5 h and use of hydrogen gas by 1/4.

Keywords

membrane-electrode assembly;activation;cyclic voltammetry;hydrogen gas usage;fuel cell

References

  1. C. Yang, M. Hu, C. Wang, and G. Cao, J. Power Sources, 197, 180 (2012). https://doi.org/10.1016/j.jpowsour.2011.09.038
  2. V. B. Silva, Abel Rouboa, Fuel, 93, 677 (2012). https://doi.org/10.1016/j.fuel.2011.08.052
  3. T. Tingelof and J. K. Ihonen, Int. J. Hydrogen Energy, 34, 6452 (2009). https://doi.org/10.1016/j.ijhydene.2009.05.003
  4. V. B. Silva and A. Rouboa, Fuel Process. Technol., 103, 27 (2012). https://doi.org/10.1016/j.fuproc.2011.12.042
  5. M. Boaventura and A. Mendes, Int. J. Hydrogen Energy, 35, 11649 (2010). https://doi.org/10.1016/j.ijhydene.2010.03.137
  6. Z. Xu, Z. Qi, C. He, and A. Kaufman, J. Power Sources, 156, 315 (2006).
  7. Z. Xie, X. Zhao, M. Adachi, S. Ken, T. Mashio, A. Ohma, K. Shinohara, S. Holdcroft, and T. Navessin, Energy & Environmental Science, supplementary material (ESI) (2008).
  8. W. Bi, Electrochem. Solid State Lett. 10, B101 (2007). https://doi.org/10.1149/1.2712796
  9. Chinese Patent 10010014.3 (2010).
  10. J.-H. Kim, H.-I. Lee, B. Bae, and H. Y. Ha, ECS abstract. Available from: http://www.electrochem.org/dl/ma/206/pdfs/1949.pdf (accessed 24.03.11).
  11. Road map on manufacturing R & D for the hydrogen economy, Washington, DC, July 13-14 (2005).
  12. U.S. Patent 0129689 Al (2010).
  13. U.S. Patent 6,576,356 B1 (2003).
  14. X. Ren, M. S. Wilson, and S. Gottesfeld, J. Electrochem. Soc., 143, L112 (1996).
  15. T. Q. T. Rockward, Available from: http://www.fchea.org/core/import/PDFs/Technical%20Resources/Presentation on Single Cell Testing Procedure.pdf, 2004 (accessed 24.03.11).
  16. H. Xu, Y. Song, H. R. Kunz, and J. M. Fenton, J. Electrochem. Soc., 152, A1828 (2005). https://doi.org/10.1149/1.1984351
  17. O. A. Baturina and K. E. Swider-Lyons, J. Electrochem. Soc., 156, B1423 (2009). https://doi.org/10.1149/1.3236650
  18. D. A. Stevens and J. R. Dahn, J. Electrochem. Soc., 150, A770 (2003). https://doi.org/10.1149/1.1573195