A Study on Pyrolysis Characterization and Heating Value of Semi-carbonized Wood Chip

반탄화 우드칩의 열분해 특성 및 발열량에 관한 연구

  • Kim, Ki-Seok (Department of Chemistry, Inha University) ;
  • Choi, Eun-A (Department of Chemistry, Inha University) ;
  • Ryu, Jeong-Seok (Engineering Development Team, Construction Department, Korea East-West Power) ;
  • Lee, Yong Pyo (Engineering Development Team, Construction Department, Korea East-West Power) ;
  • Park, Jong-Yeon (Engineering Development Team, Construction Department, Korea East-West Power) ;
  • Choi, Seung-Ho (Engineering Development Team, Construction Department, Korea East-West Power) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • Published : 2012.10.10

Abstract

In this work, a semi-carbonized wood chip (SC-WC) was prepared by heat-treatment at low carbonization temperature. The pyrolysis characterization and heating value of the SC-WC at different heat-treatment temperature were evaluated. The pyrolysis characterization and heating value of the SC-WC were determined using thermal gravimetric analyzer (TGA) in $N_{2}$ atmosphere and calorimeter, respectively. From the TGA results, the thermal decomposition reaction of the SC-WC treated at by low temperature was similar to pure wood chip and the reaction was most actively occurred in the range of $200^{\circ}C$ to $400^{\circ}C$, whereas the initial thermal decomposition temperature of the SC-WC increased with the increasing heat-treatment temperature. In addition, the heating value of the SC-WC showed a similar trend as to the decamposition temperature behavior. This is probably attributed to increased carbon content of SC-WC by the localized carbonization of the wood chip which consisted of cellulose, hemi-cellulose, and lignin.

Keywords

wood chip;pyrolysis;heating value;semi-carbonization;thermal decomposition

References

  1. D. Timmons and C. V. Mejía, Biomass Bioenergy, 34, 1419 (2010). https://doi.org/10.1016/j.biombioe.2010.04.010
  2. M. V. de Velden, J. Baeyens, A. Brems, B. Janssens, and R. Dewil, Renew. Energ., 35, 232 (2010). https://doi.org/10.1016/j.renene.2009.04.019
  3. K. Papadikis, S. Gu, and A. V. Bridgwater, Chem. Eng. J., 149, 417 (2009). https://doi.org/10.1016/j.cej.2009.01.036
  4. K. Kamimura, H. Kuboyama, and K. Yamamoto, Biomass Bioenergy, 36, 107 (2012). https://doi.org/10.1016/j.biombioe.2011.10.020
  5. H. Viana, W. B. Cohen, D. Lopes, and J. Aranha, Appl. Energy, 87, 2551 (2010). https://doi.org/10.1016/j.apenergy.2010.02.007
  6. V. Dornburg and A. P. C. Faaij, Biomass Bioenergy, 21, 91 (2001). https://doi.org/10.1016/S0961-9534(01)00030-7
  7. J. Chau, T. Sowlati, S. Sokhansanj, F. Preto, S. Melin, and X. Bi, Appl. Energy, 86, 616 (2009). https://doi.org/10.1016/j.apenergy.2008.11.005
  8. B. Schneider and M. Kaltschmitt, Ecol. Eng., 16, 123 (2000). https://doi.org/10.1016/S0925-8574(00)00060-4
  9. M. R. Wu, D. L. Schott, and G. Lodewijks, Biomass Bioenergy, 35, 2093 (2011). https://doi.org/10.1016/j.biombioe.2011.02.020
  10. T. Yoshida, H. Sasaki, T. Takano, and O. Sawabe, Biomass Bioenergy, 34, 1053 (2010). https://doi.org/10.1016/j.biombioe.2010.02.013
  11. W. G. Glasser, L. In, R. P. Overend, T. A. Milne, and L. K. Mudge, ed. Fundamentals of biomass thermochemical conversion, London: Elsevier (1985).
  12. C. D. Blasi, Prog. Energy Combust. Sci., 34, 47 (2008). https://doi.org/10.1016/j.pecs.2006.12.001
  13. S. Y. Yorulmaz and A. T. Atimtay, Fuel Proc. Technol., 90, 939 (2009). https://doi.org/10.1016/j.fuproc.2009.02.010
  14. D. W. Kim, J. M. Lee, J. S. Kim, and P. K. Seom, Korean Chem. Eng. Res., 48, 58 (2010).
  15. D. L. Pyle and C. A. Zaror, Chem. Eng. Sci., 19, 147 (1984).
  16. M. J. Antal and G. Varhegyi, Ind. Eng. Chem. Res., 34, 703 (1995). https://doi.org/10.1021/ie00042a001
  17. P. McKendry, Bioresource Technol., 83, 37 (2002). https://doi.org/10.1016/S0960-8524(01)00118-3
  18. M. H. Duku, S. Gu, and E. B. Hagan, Renew. Sust. Energ. Rev., 15, 404 (2011). https://doi.org/10.1016/j.rser.2010.09.033