Antimicrobial Peptide as a Novel Antibiotic for Multi-Drug Resistance "Super-bacteria"

다제내성 슈퍼박테리아에 대한 새로운 항생제인 항균 펩타이드

  • Park, Seong-Cheol (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Nah, Jae-Woon (Department of Polymer Science and Engineering, Sunchon National University)
  • 박성철 (순천대학교 공과대학교 고분자공학과) ;
  • 나재운 (순천대학교 공과대학교 고분자공학과)
  • Published : 2012.10.10

Abstract

According to the requirement of novel antimicrobial agents for the rapidly increasing emergence of multi-drug resistant pathogenic microbes, a number of researchers have found new antibiotics to overcome this resistance. Among them, antimicrobial peptides (AMPs) are host defense molecules found in a wide variety of invertebrate, plant, and animal species, and are promising to new antimicrobial candidates in pharmatherapeutic fields. Therefore, this review introduces the antimicrobial action of antimicrobial peptide and ongoing development as a pharmetherapeutic agent.

Keywords

antimicrobial peptide;multi-drug resistance;biofilm;MRSA;lipopolysaccharide

References

  1. R. M. Klevens, J. R. Edwards, C. L. Richards, T. C. Jr Horan, R. P. Gaynes, D. A. Pollock, and D. M. Cardo, Public Health Rep., 122, 160 (2007).
  2. K. Yuji, G. Oiso, T. Matsumura, N. Murashige, and M. Kami, Clin. Infect. Dis., 52, 422 (2011).
  3. P. Nordmann, L. Poirel, T. R. Walsh, and D. M. Livermore, Trends Microbiol., 19, 588 (2011). https://doi.org/10.1016/j.tim.2011.09.005
  4. L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, Nat. Rev. Microbiol., 2, 95 (2004). https://doi.org/10.1038/nrmicro821
  5. P. S. Stewart and J. W. Costerton, Lancet, 358, 135 (2001). https://doi.org/10.1016/S0140-6736(01)05321-1
  6. N. P. O'Grady, M. Aexander, E. P. Dellinger, J. L. Gerberding, S. O. Heard, D. G. Maki, and H. Masur, et al. MMWR Recomm. Rep., 51, 129 (2002).
  7. M. Zasloff, Nature, 415, 389 (2002). https://doi.org/10.1038/415389a
  8. J. J. Oppenheim, A. Biragyn, L. W. Kwak, and D. Yang, Ann. Rheum. Dis., 62, 1721 (2003).
  9. H. Steiner, D. Hultmark, A. Engström, H. Bennich, and H. G. Boman, Nature, 292, 246 (1981). https://doi.org/10.1038/292246a0
  10. Y. Shai, Biopolymers, 66, 236 (2002). https://doi.org/10.1002/bip.10260
  11. R. E. Hancock and H. G. Sahl, Nat. Biotechnol., 24, 1551 (2006). https://doi.org/10.1038/nbt1267
  12. M. R. Yeaman and N. Y. Yount, Pharmacol. Rev., 55, 27 (2003). https://doi.org/10.1124/pr.55.1.2
  13. S. C. Park, K. S. Hahm, and Y. Park, Int. J. Mol. Sci., 12, 5971 (2011). https://doi.org/10.3390/ijms12095971
  14. L. Guo, K. B. Lim, C. M. Poduje, M. Daniel, J. S. Gunn, M. Hackett, and S. I. Miller, Cell, 95, 189 (1998). https://doi.org/10.1016/S0092-8674(00)81750-X
  15. R. J. Pieters, C. J. Arnusch, and E. Breukink, Protein Pept. Lett., 16, 736 (2009). https://doi.org/10.2174/092986609788681841
  16. M. Wu, E. Maier, R. Benz, and R. E. Hancock, Biochemistry, 38, 7235 (1999). https://doi.org/10.1021/bi9826299
  17. S. C. Park, J. Y. Kim, C. Jeong, S. Yoo, Y. Park, and K. S. Hahm, Biochim. Biophys. Acta., 1808, 171 (2011). https://doi.org/10.1016/j.bbamem.2010.08.023
  18. P. Nicias, FEBS J., 276, 6483 (2009). https://doi.org/10.1111/j.1742-4658.2009.07359.x
  19. G. Kragol, S. Lovas, G. Varadi, B. A. Condie, R. Hoffmann, and L. Jr. Otvos, Biochemistry, 40, 3016 (2001). https://doi.org/10.1021/bi002656a
  20. J. H. Cho, B. H. Sung, and S. C. Kim, Biochim. Biophys. Acta, 1788, 1564 (2009).
  21. E. Gazit, I. R. Miller, P. C. Biggin, M. S. Sansom, and Y. Shai, J. Mol. Biol., 258, 860 (1996). https://doi.org/10.1006/jmbi.1996.0293
  22. M. Zasloff, Proc. Natl. Acad. Sci. USA, 84, 5449 (1987). https://doi.org/10.1073/pnas.84.15.5449
  23. D. G. Lee, H. N. Kim, Y. Park, H. K. Kim, B. H. Choi, C. H. Choi, and K. S. Hahm, Biochim. Biophys. Acta., 1598, 185 (2002). https://doi.org/10.1016/S0167-4838(02)00373-4
  24. Y. Park, S. C. Park, H. K. Park, S. Y. Shin, Y. Kim, and K. S. Hahm, Biopolymers, 88, 199 (2007). https://doi.org/10.1002/bip.20679
  25. S. C. Park, M. H. Kim, M. A. Hossain, S. Y. Shin, Y. Kim, L. Stella, J. D. Wade, Y. Park, and K. S. Hahm, Biochim. Biophys. Acta., 1778, 229 (2008). https://doi.org/10.1016/j.bbamem.2007.09.020
  26. R. I. Lehrer and T. Ganz, Curr. Opin. Immunol., 11, 23 (1999). https://doi.org/10.1016/S0952-7915(99)80005-3
  27. R. E. Hancock, Lancet, 349, 418 (1999).
  28. A. Weinberg, S. Krisanaprakornkit, and B. A. Dale, Crit. Rev. Oral Biol. Med., 9, 399 (1998). https://doi.org/10.1177/10454411980090040201
  29. C. Subbalakshmi and N. Sitaram, FEMS Microbiol. Lett., 160, 91 (1998). https://doi.org/10.1111/j.1574-6968.1998.tb12896.x
  30. C. H. Hsu, C. Chen, M. L. Jou, A. Y. Lee, Y. C. Lin, Y. P. Yu, W. T. Huang, and S. H. Wu, Nucleic Acids Res., 33, 4053 (2005). https://doi.org/10.1093/nar/gki725
  31. E. Rubinchik, D. Dugourd, T. Algara, C. Pasetka, and H. D. Friedland, Int. J. Antimicrob. Agents, 34, 457 (2009). https://doi.org/10.1016/j.ijantimicag.2009.05.003
  32. A. T. Yeung, S. L. Gellatly, and R. E. Hancock, Cell. Mol. Life Sci., 68, 2161 (2011). https://doi.org/10.1007/s00018-011-0710-x
  33. M. Zaiou, J. Mol. Med., 85, 317 (2007). https://doi.org/10.1007/s00109-006-0143-4