Physical Properties of Polymer Concrete Composites Using Rapid-Cooled Steel Slag (II) (Use of Rapid-Cooled Steel Slag in Replacement of Fine and Coarse Aggregate)

급냉 제강슬래그를 사용한 폴리머 콘크리트 복합재료의 물성(II) (급냉 제강슬래그를 잔골재와 굵은 골재 대체용으로 사용)

  • Hwang, Eui-Hwan (Department of Chemical Engineering, Kongju National University) ;
  • Lee, Choul-Ho (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Jin-Man (Department of Architecture, Kongju National University)
  • Published : 2012.08.10

Abstract

To recycle the steel slag as manufactured composite materials of polymer concretes, we used the atomizing method to make round aggregates from steel slag, which is treated as industrial wastes. A round rapid-cooled steel slag was used to replace fine aggregate (river sand) or coarse aggregate (crushed aggregate), depending on the grain size. To examine general physical properties of polymer concrete composites manufactured from rapid-cooled steel slag, the polymer concrete specimen with various proportions depending on the addition ratio of polymer binder and replacement ratio of rapid-cooled steel slag were manufactured. In the result of the tests, the mechanical strength of the specimen made by replacing the optimum amount of rapid-cooled steel slag increased notably (maximum compressive strength 117.1 MPa), and the use of polymer binder, which had the most impact on the production cost of polymer concrete composites, could be remarkably reduced. However, the mechanical strength of the specimen was markedly reduced in hot water resistance test of polymer concrete composite.

References

  1. E. H. Hwang and T. S. Hwang, J. Ind. Eng. Chem., 13, 585 (2007).
  2. J. M. Kim, S. H. Cho, K. J. Kwon, and M. H. Kim, J. Archi. Inst. Korea, 21, 121 (2005).
  3. E. H. Hwang, Y. S. Ko, J. M. Kim, and T. S. Hwang, J. Ind. Eng. Chem., 15, 628 (2009). https://doi.org/10.1016/j.jiec.2009.09.033
  4. J.-M. Kim, E.-G. Kwak, and K.-S. Bae, J. Korea Conc. Instit., 19, 549 (2007). https://doi.org/10.4334/JKCI.2007.19.5.549
  5. D. G. Montgomery and G. Wang, Cem. Conc. Res., 21, 1083 (1991). https://doi.org/10.1016/0008-8846(91)90068-S
  6. D. G. Montgomery and G. Wang, Cem. Conc. Res., 22, 755 (1992). https://doi.org/10.1016/0008-8846(92)90098-G
  7. J.-M. Kim, S.-H. Cho, S.-Y. Oh, and E.-G. Kwak, Mag. Korea Conc., Instit., 19, 39 (2007). https://doi.org/10.4334/JKCI.2007.19.1.039
  8. O. S. Oh et al., Patent No. 10-0098062-0000 (1996).
  9. D. W. Fowler, Cem. Conc. Res., 21, 449 (1999). https://doi.org/10.1016/S0958-9465(99)00032-3
  10. J. P. Gorninski, D. C. D. Molin, and C. S. Kazmierczak, Cem. Conc. Res., 34, 2091 (2004). https://doi.org/10.1016/j.cemconres.2004.03.012
  11. M. Haidar, E. Ghorbel, and H. Toutanji, Const. Build. Mater., 25, 1632 (2011). https://doi.org/10.1016/j.conbuildmat.2010.10.010
  12. H. Abdel-Fattah and M. M. El-Hawary, Const. Build. Mater., 13, 253 (1999). https://doi.org/10.1016/S0950-0618(99)00030-6
  13. J. P. Gorninski, D. C. D. Molin, and C. S. Kazmierczak, Cem. Conc. Compos., 29, 637 (2007). https://doi.org/10.1016/j.cemconcomp.2007.04.001
  14. Yoshihiko Ohama, Proc. 12th Inter. Cong. on polym. in Conc., ed. K.-S. Yeon, 12, 37, Chuncheon (2007).
  15. D. V. Gemert and L. Czarnecki, et al, Cem. Conc. Compos., 27, 926 (2005). https://doi.org/10.1016/j.cemconcomp.2005.05.004
  16. J. T. San-Jose, I. J. Vegas, and M. Frias, Const. Build. Mater., 22, 2031 (2008). https://doi.org/10.1016/j.conbuildmat.2007.08.001
  17. B.-W. Jo, S.-K. Park, and D.-K. Kim, Const. Build. Mater., 22, 14 (2008). https://doi.org/10.1016/j.conbuildmat.2007.02.009
  18. G. D. Soraru and P. Tassone, Const. Build. Mater., 18, 561 (2004). https://doi.org/10.1016/j.conbuildmat.2004.04.019
  19. N. F. O. Evbuomwan, Proc. 6th Inter. cong. on Polym. in Conc., eds. H. Yiun-Yuan, W. Keru, and C. Zhiyuan, 6, 52, Shanghai (1990).
  20. E. Semerad, P. Kremnitzer, W. Lacom, F. holub, and P. Sattler, Proc. 5th Inter. cong. on Polym. in Conc., ed. B. W. Staynes, 5, 223, Brighton (1987).