Preparation of $TiO_2$ Particles using Binary Ionic Liquids for Photocatalysis

이성분계 이온성액체를 이용한 광촉매용 이산화 티타늄 입자 제조

  • Lee, Seulbi (Department of Chemical Engineering, Seoul National University of Science & Technology) ;
  • Yoo, Kye Sang (Department of Chemical Engineering, Seoul National University of Science & Technology)
  • 이슬비 (서울과학기술대학교 화공생명공학과) ;
  • 유계상 (서울과학기술대학교 화공생명공학과)
  • Published : 2012.08.10

Abstract

$TiO_2$ particles with various shapes were synthesized by using a modified sol-gel method with binary ionic liquids. The structural properties of the particles were significantly affected by the composition of ionic liquids. This is mainly attributed to the interaction between the organic solvent and ionic liquid at the interface leading to the formation of particle structure. The photocatalytic activity of the prepared samples was also examined for the degradation of 4-chlorophenol. Among the particles, $TiO_2$ prepared with 1-octyl-3-methylimidazolium tetrafluoroborate and 1-octyl-3-methylimidazolium tetrafluoroborate showed the best photocatalytic performance.

References

  1. A. Fujishima, K. Hashimoto, and T. Watanabe, $TiO_2$ Photocatalysis, Fundamentals and Applications, Bkc Inc., Tokyo (1999).
  2. L. Jakob, E. Oliveros, O. Legrini, and A. M. Braun, Photocatalytic Purification and Treatment of Water and Air, ed. F. D. Ollis, and H. Al-Ekabi, 511, Elsevier Science, Amsterdam (1993).
  3. J. Grzechulska, M. Hamerski, and A. W. Morawski, Water Res., 34, 1638 (2000). https://doi.org/10.1016/S0043-1354(99)00275-4
  4. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev., 95, 69 (1995). https://doi.org/10.1021/cr00033a004
  5. D. M. Antonelli, and Ying, J. Y., Angew. Chem. Int. Ed., 34, 2014 (1995). https://doi.org/10.1002/anie.199520141
  6. P. Yang, D. Zhao, D. I. Margolese, B. F. Chemlka, and G. D. Stucky, Chem. Mater., 11, 2813 (1999). https://doi.org/10.1021/cm990185c
  7. D. M. Antonelli, Micropor. Mesopor. Mater., 30, 315 (1999). https://doi.org/10.1016/S1387-1811(99)00042-6
  8. Z. Y. Peng, Z. Shi, and M. L. Liu, Chem. Commun., 21, 2125 (2000).
  9. H. Yoshitake, T. Sugihara, and T. Tatsumi, Chem. Mater., 14, 1023 (2002). https://doi.org/10.1021/cm010539b
  10. H. Lee, J. S. Lee, and H. S. Kim, Appl. Chem. Eng., 21, 12 (2010).
  11. P. Wasserscheid and W. Keim, Angew. Chem. Int. Ed., 39, 3773 (2000).
  12. T. Welton, Chem. Rev., 99, 2071 (1999). https://doi.org/10.1021/cr980032t
  13. T. Nakashima and N. Kimizuka, J. Am. Chem. Soc., 125, 6386 (2003). https://doi.org/10.1021/ja034954b
  14. M. Zhao, L. Zheng, N. Li, and L. Yu, Mater. Lett., 62, 4591 (2008). https://doi.org/10.1016/j.matlet.2008.08.047
  15. Y. Zhou and M. Antonietti, J. Am. Chem. Soc., 125, 14960 (2003). https://doi.org/10.1021/ja0380998
  16. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscow, R. A. Pierotti, J. Rouquerol, and T. Siemieniewska, Pure Appl. Chem., 57, 603 (1985). https://doi.org/10.1351/pac198557040603
  17. L. Z. Wang, S. Tomura, M. Maeda, F. Ohashi, K. Inukai, and M. Suzuki, Chem. Lett., 12, 1414 (2000).