Reaction Optimization for Enzymatic Synthesis of Astragalin

효소를 이용한 아스트라갈린 합성 반응의 최적화

  • Lee, Seul Bi (Department of Polymer Engineering, College of Engineering, Suwon University) ;
  • Chung, Dae-won (Department of Polymer Engineering, College of Engineering, Suwon University)
  • 이슬비 (수원대학교 공과대학 신소재공학과) ;
  • 정대원 (수원대학교 공과대학 신소재공학과)
  • Published : 2012.08.10

Abstract

Astragalin (AS), kaempferol monoglycoside, is classified as a polyphenol, and a minute quantity of AS is known to be present in several plants. Recently, it was reported that AS can be prepared by the partial hydrolysis of camelliaside A (CamA) and camelliaside B (CamB) in the tea seed extract (TSE) in the presence of a commercial enzyme complex such as Mash. In this paper, the effects of reaction temperature, amount of enzyme, and the substrate concentration on the reactivity were investigated. As the reaction temperature or the amount of enzyme increased, the reaction rate to produce AS increased, however, the hydrolysis of AS into KR was also enhanced. As a conclusion, the reaction, when 2 mL of Mash to 1 g of TSE was applied with a substrate concentration of 15% at $50^{\circ}C$, was found to be optimum, based on the reaction rate and the selectivity to AS.

References

  1. J. Jerzy, H. S. Steven, and S. Rafal, Nature, 387, 561 (1997). https://doi.org/10.1038/42381
  2. K. Imai, D. Litt, K. Suga, and K. Nakachi, Prev. Med., 26, 769 (1997). https://doi.org/10.1006/pmed.1997.0242
  3. T. Sekine, J. Arita, K, Yamaguchi, K. Saito, S. Okonogi, N. Morisaki, S. Iwasaki, and I. Murakoshi, Phytochemistry, 30, 991 (1991). https://doi.org/10.1016/0031-9422(91)85293-9
  4. K. Hayashi, Y. Sagesaka, T. Suzuki, and Y. Suzuki, Biosci. Biotechnol. Biochem., 64, 184 (2000). https://doi.org/10.1271/bbb.64.184
  5. J. H. Choi, J. O. Nam, and J. Y. Kim, Food Sci. Biotechnol., 15, 672 (2006).
  6. H. S. Yang, J. O. Kim, H. C. Kim, I. S. Nou, and K. I. Seo, Kor. J. Food Preserv., 13, 769 (2006).
  7. N. H. Kim, S. K. Choi, and S. J. Kim, Euro. J. Physio., 457, 293 (2008). https://doi.org/10.1007/s00424-008-0537-y
  8. J. S. Park, H. S. Rho, D. H. Kim, and I. S. Chang, J. Agr. Food Chem., 54, 2951 (2006). https://doi.org/10.1021/jf052900a
  9. J. S. Park, M. H. Yeom, W. S. Park, K. M. Joo, H. S. Rho, D. H. Kim, and I. S. Chang, Biosci. Biotechnol. Biochem., 70, 387 (2006). https://doi.org/10.1271/bbb.70.387
  10. M. Kotani, M. Matsumoto, A. Fujita, S. Higa, W. Wang, M. Suemura, T. Kishimoto, and T. Tanaka, J. Allergy Clin. Immunol., 106, 159 (2000). https://doi.org/10.1067/mai.2000.107194
  11. H. Y. Kim, B. H. Moon, H. J. Lee, and D. H. Choi, J. Ethnopharmacol, 93, 227 (2004). https://doi.org/10.1016/j.jep.2004.03.047
  12. J. C. Park and S. H. Kim, J. Kor. Soc. Food Nutr., 24, 901 (1995).
  13. M. Y. Kim, Y. C. Kim, and S. K. Chung, J. Sci. Food Agric., 85, 633 (2005). https://doi.org/10.1002/jsfa.1899
  14. K. Ishiguro and H. Oku, Phytother. Res., 11, 343 (1997). https://doi.org/10.1002/(SICI)1099-1573(199708)11:5<343::AID-PTR103>3.0.CO;2-4
  15. H. B. Lee, E. K. Kim, S. J. Park, S. G. Bang, T. G. Kim, and D. W. Chung, J. Sci. Food Agric., 91, 2315 (2011). https://doi.org/10.1002/jsfa.4457
  16. H. B. Lee, E. K. Kim, S. J. Park, S. G. Bang, T. G. Kim, and D. W. Chung, J. Agric. Food Chem., 58, 4808 (2010). https://doi.org/10.1021/jf9045182
  17. S. I. Mussatto, G. Dragone, M. Fernandes, and A. M. Milagres, Cellulose, 15, 711 (2008). https://doi.org/10.1007/s10570-008-9215-7
  18. S. H. Lee, Y. J. Jo, S. Kim, B. J. An, and C. Choi, J. Kor. soc. Agric. Chem. Biotechnol., 38, 248 (1995).