Effect of Wrapping Treatment on the Dispersion of MWNT in CNT/ABS/SAN Composites

CNT/ABS/SAN계의 분산성에 미치는 MWNT Wrapping 전처리 효과

  • Kim, Sung Tae (R&D Center, Woosung Chemical Ltd.) ;
  • Park, Hae Youn (Department of Polymer Science & Engineering, Kyungpook National University) ;
  • No, Tae Kyeong (Department of Polymer Science & Engineering, Kyungpook National University) ;
  • Kang, Dong Gug (Research & Development Institute, Pyung-hwa Oil seal Industry co., LTD.) ;
  • Jeon, Il Ryeon (Department of Chemial Engineering, Kyungil University) ;
  • Seo, Kwan Ho (Department of Polymer Science & Engineering, Kyungpook National University)
  • 김성태 ((주)우성케미칼 연구소) ;
  • 박해윤 (경북대학교 고분자공학과) ;
  • 노태경 (경북대학교 고분자공학과) ;
  • 강동국 (평화오일씰공업(주) 기술개발본부) ;
  • 전일련 (경일대학교 화학공학과) ;
  • 서관호 (경북대학교 고분자공학과)
  • Published : 2012.08.10

Abstract

Carbon nanotubes (CNT) are considered as one of ideal nano-fillers in the field of composites with their excellent electrical, mechanical, and thermal properties. Therefore CNT composites are increasingly used in fabricating conductive materials, structural materials with high strength and low weight, and multifunctional materials. The main problem of the CNT composites is difficulty in the dispersion of CNT in the polymer matrix. In this study multi-walled carbon nanotubes (MWNT) were pretreated by the physical process utilizing a wrapping method. After the pretreatment polymer/MWNT nanocomposites were prepared by melt processing. The effect of functionalization MWNT by wrapping with styrene acrylonitrile (SAN) on the mechanical and electrical properties of acrylonitrile butadiene styrene resin (ABS)/MWNT composites was studied by comparing the properties of ABS mixed with the neat MWNT. Electrical and mechanical properties of ABS/MWNT nanocomposites were studied as a function of the functionalization and content of MWNT. The tensile strength of the ABS/MWNT nanocomposites increased, but the impact strength decreased. The polymer wrapping in ABS system has little effect on the improvement of electrical properties.

References

  1. E. T. Thostenson, C. Li, and T. W. Chou, Compos Sci. Technol., 65, 491 (2005). https://doi.org/10.1016/j.compscitech.2004.11.003
  2. O. Breuer and U. Sundararaj, Polym. Compos., 25, 630 (2004). https://doi.org/10.1002/pc.20058
  3. M. van der Elst, C. P. A. T. Klein, J. M. de Blreck-Hogervorst, P. Patka, and H. J. Th. M. Haarman, Biomaterials, 20, 121 (1999). https://doi.org/10.1016/S0142-9612(98)00117-3
  4. N. J. Mathers and J. T. Czernuszka, J. Mater. Sci. Lett., 10, 992 (1991). https://doi.org/10.1007/BF00721823
  5. S. Iijima, Nature (London), 56, 354 (1991).
  6. M. J. O'Connel, P. Boul, and L. M. Ericson, Chem. Phys. Lett., 342, 265 (2001). https://doi.org/10.1016/S0009-2614(01)00490-0
  7. W. Ding, A. Eitan, F. T. Fisher, X. Chen, and D. A. Dikin, Nano Lett., 3, 1593 (2003). https://doi.org/10.1021/nl0345973
  8. H. Guo, T. V. Sreekumar, T. Liu, M. Minus, and S Kumar, Polymer, 46, 3001 (2005). https://doi.org/10.1016/j.polymer.2005.02.013
  9. J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun'ko, Polymer Compos., 44, 1624 (2006).
  10. R. Haggenmueller, H. H. Gommans, A. G. Rinzler, J. E. Fischer, and K. I. Winey, Chem. Phys. Lett., 330, 219 (2000). https://doi.org/10.1016/S0009-2614(00)01013-7
  11. S. Kumar, T. D. Dang, F. E. Arnold, A. R. Bhattacharyya, B. G. Min, X. Zhang, R. A. Vaia, C. Park, W. W. Adams, R. H. Hauge, R. E. Smalley, S. Ramesh, and A. Peter, Macromolecules., 35, 9039 (2002). https://doi.org/10.1021/ma0205055
  12. B. N. Jang and C. A. Wilkie, Polymer, 46, 9702 (2005). https://doi.org/10.1016/j.polymer.2005.07.078