유기용매와 인산칼륨 용액을 이용한 폐 인쇄회로기판에서 비금속성분의 분리

Separation of Non-Metallic Components in Waste Printed Circuit Boards (WPCBs) using Organic Solvent and Potassium Phosphate Solution

  • 이재천 (한국지질자원연구원 광물연구본부) ;
  • 정진기 (한국지질자원연구원 광물연구본부) ;
  • 김종석 (전북대학교 화학공학부)
  • Lee, Jae-Cheon (Mineral Resource Divisionn, Korea Institute of Geoscience and Mineral Resources) ;
  • Jeong, Jin Ki (Mineral Resource Divisionn, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Jong Seok (School of Chemical Engineering, Chonbuk National University)
  • 발행 : 2012.08.10

초록

폐 인쇄회로기판(WPCBs)은 Cu, Ni, Au, Ag, Pd 등의 희귀금속을 함유하고 있다. 폐 전자제품의 양이 지속적으로 증가하므로, WPCBs에서 희귀금속을 회수하는 방법에 대한 연구가 필요하다. WPCBs에서 유리섬유 보강 에폭시수지로부터 금속과 유리섬유 및 에폭시 수지로 원재료로 분리하는 방법으로 화학적 재활용 방법은 어려운 방법으로 알려져 있다. 본 연구에서는 WPCBs에서 금속 및 비금속성분을 분리하는 화학적 방법으로 에폭시 수지의 해중합을 methylpyrrolidone와 dimethylformamide 용매에서 $K_3PO_4$ 촉매를 사용하였다. WPCBs의 반응온도를 $160{\sim}200^{\circ}C$범위에서 진행하였고 반응시간을 2~12 h하여 반응을 진행하였다. WPCBs의 반응 후 얻은 재생 유리섬유를 열중량분석기를 통해 분석하였으며 WPCBs에서 에폭시 수지의 용해도를 조사하였다.

참고문헌

  1. J. M. Yoo, J. K. Jeong, K. K. Yoo, J. C. Lee, and W. B. Kim, Wast. Manage., 29, 1132 (2009). https://doi.org/10.1016/j.wasman.2008.06.035
  2. S. H. Lee and Y. M. Jo, Korean Indus. Chem. News, 13, 2 (2010).
  3. J. C. Lee, H. T. Song, and J. M. Yoo, Resour. Conserv. Recy., 50, 380 (2007). https://doi.org/10.1016/j.resconrec.2007.01.010
  4. M. S. Kim, J. C. Lee, J. K. Jeong, B. S. Kim, and E. Y. Kim, J. Kor. Inst. Resour. Recy., 14, 45 (2005).
  5. S. Zang, E. Forssberg, B. Arvidson, and W. Moss, Resour. Conserv. Recy., 23, 225 (1998). https://doi.org/10.1016/S0921-3449(98)00022-6
  6. W. J. Hall and P. T. Williams, Resour. Conserv. Recy., 51, 691 (2007). https://doi.org/10.1016/j.resconrec.2006.11.010
  7. J. Guo, J. Li, Q. Rao, and Z. Xu, Environ. Sci. Technol., 42, 624 (2008). https://doi.org/10.1021/es0712930
  8. W. J. Hall, N. Miskolczi, J. Onwudili, and P. T. Williams., Energy Fuels, 22, 1691 (2008). https://doi.org/10.1021/ef800043g
  9. Y. J. Park and D. J. Fray, J. Hazard. Mater., 164, 1152 (2009). https://doi.org/10.1016/j.jhazmat.2008.09.043
  10. E. J. Kelly, Base Material Components, in Printed Circuits Handbook, C. F. Coombs, Ed, McGraw-Hill, New York, Vol 1, Chap. 7 (2008).
  11. W. Dang, M. Kubouchi, H. Sembokuyu, and K. Tsuda, Polymer, 46, 1905 (2005). https://doi.org/10.1016/j.polymer.2004.12.035
  12. M. Goto, M. Sasaki, and T. Hirose, J. Mater. Sci., 41, 1509 (2006). https://doi.org/10.1007/s10853-006-4615-2
  13. M. Goto, J. Supercrit. Fluids, 47, 500 (2009). https://doi.org/10.1016/j.supflu.2008.10.011
  14. D. Braun, W. Gentzkow, and A. P. Rudolf, Polym. Degrad. Stabil., 74, 25 (2001). https://doi.org/10.1016/S0141-3910(01)00035-0
  15. Y. Sato, Y. Kondo, K. Tsujita, and N. Kawai, Polym. Degrad. Stabil., 89, 317 (2005). https://doi.org/10.1016/j.polymdegradstab.2005.01.015
  16. C. Reichardt, Solvents and Solvents Effect in Organic Chemistry, 237, Wiley-VCH, New York (1988).
  17. H. Shih and A. Reister, Macromolecules, 30, 4353 (1997). https://doi.org/10.1021/ma970088+
  18. F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry, Part A: Structure and Mechanisms, 389, Springer, New York (2008).
  19. C. R. Moon, B. R. Bang, W. J. Choi, G. H. Kang, and S. Y. Park, Polymer Testing, 24, 376 (2005). https://doi.org/10.1016/j.polymertesting.2004.10.002