Rechargeable Zn-air Energy Storage Cells Providing High Power Density

고출력.고에너지 밀도의 아연금속-공기전지

  • Park, Dong-Won (Lab. for Energy Storage System, Research Institute for Solar & Sustainable Energies (RISE)) ;
  • Kim, Jin Won (School of Environmental Science and Engineering) ;
  • Lee, Jae Kwang (Ertl center for Electrochemistry and Catalysis, Gwangju Institute of Science and Technology (GIST)) ;
  • Lee, Jaeyoung (Lab. for Energy Storage System, Research Institute for Solar & Sustainable Energies (RISE))
  • 박동원 (광주과학기술원 솔라에너지연구소 에너지저장 연구실) ;
  • 김진원 (환경공학부) ;
  • 이재광 (Ertl 실용촉매연구센터) ;
  • 이재영 (광주과학기술원 솔라에너지연구소 에너지저장 연구실)
  • Published : 2012.08.10


Zn-Air energy storage cell is an attractive type of batteries due to its theoretical gravimetric energy density, cost-effective structure and environmental-friendly characteristics. The chargeability is the most critical in various industrial applications such as smart portable device, electric vehicle, and power storage system. Thus, it is necessary to reduce large overpotential of oxygen reduction/evolution reaction, the irreversibility of Zn anode, and carbonation in alkaline electrolyte. In this review, we try to introduce recent studies and developments of bi-functional air cathode, enhanced charge efficiency via modification of Zn anode structure, and blocking side reactions applying hybrid organic-aqueous electrolyte for high power density rechargeable Zn-Air energy storage cells.


  1. P. Sapkota and H. Kim, J. Ind. Eng. Chem., 15, 445 (2009).
  2. T. Ogasawara, A. Debart, M. Holzapfel, P. Novak, and P. G. Bruce, J. Am. Chem. Soc., 128, 1390 (2006).
  3. D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen. M. Moshkovich, and E. Levi, Nature, 407, 724 (2000).
  4. Y. Ma, N. Li, D. Li, M. Zhang, and X. Huang, J. Power Sources, 196, 2346 (2011).
  5. J. R. Zabaleta, Zinc air fuel cell vehicles; Review of different technologies to obtain zinc from zinc oxide, Illinois Institute of Technology (2011).
  6. U. S. Patent 5,190,833, (1993).
  7. Website of MEET Co., Ltd. (Korea) :
  8. M. Farnsworth, C. H. Kline, and J. G. Noltes, Zinc Chemicals, Zinc Development Association, London (1973).
  9. T. P. Dirkse, in Zinc-Silver Oxides Batteries, ed. A. Fleischer and J. Lander, 1, Electrochemical Society Inc., Princeton, NJ (1971).
  10. J. Kim, H. Lee, T. Oh, and S. Park, J. Korean Electrochem. Soc., 14, 231 (2011).
  11. K. Kinoshita, Electrochemical Oxygen Technology, Vol. I, 448, Wiley, New York (1992).
  12. V. Neburchilov, H. Wang, J. J. Martin, and W. Qu, J. Power Sources, 195, 1271 (2010).
  13. U. S. Patent 5,318,862 (1994).
  14. A. Gibeney and D. Zuckerbrod, Power Source, ed. J. Thomson, 143, Academic, New York (1983).
  15. D. Tryk, W. Alfred, and E. Yeager. First Report for the period Oct.9,1980 to Apr.1.prepared by Western Reserve University. Subcontract 1377901 for Lawrence Livermore National Laboratory, Livermore, CA (1983).
  16. Y. Shimizu, H. Matsude, A. Nemoto, N. Miura, and N. Yamazoe, Progress in Batteries & Battery Materials, ed. H. Noguchi, 12, 108, ITE-JEC Press, Brunswick, Ohio (1993).
  17. Y. Shimizu, A. Nemoto, T. Hyodo, N. Miura, and N. Yamazoe, Denki Kagaku, 61, 1458 (1993).
  18. A. N. Jain, S. K. Tiwari, P. Chartier, and R. N. Singh, J. Chem. Soc., Faraday Trans., 91, 1871 (1995).
  19. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, and H. Dai, Nature Materials, 10, 780 (2011).
  20. Y. Gorlin and T. F. Jaramillo, J. Am. Chem. Soc., 132, 13612 (2010).
  21. Z. Chen, A. Yu, D. Higgings, H. Li, H. Wang, and Z. Chen, Nano Lett., 12, 1946 (2012).
  22. H.-Y. Jung, Appli. Chem. Eng., 229, 125 (2011).
  23. L. Wang, X. Zhao, Y. Lu, M. Xu, D. Zhang, R. Ruoff, K. J. Stevenson, and J. B. Goodenough, J. Electrochem. Soc., 158, A1379 (2011).
  24. B. G. Demczyk and C. T. Liu, J. Electrochem. Soc., 129, 1159 (1982).
  25. U. S. Patent 4,333,993 (1982).
  26. U. S. Patent 5,306,579 (1994).
  27. U. S. Patent 6,428,931 (2002).
  28. H. Meng and P. K. Shen, Electrochem. Commun., 8, 588 (2006).
  29. J. S. Lee, S. T. Kim, R. Cao, N. S. Choi, M. Liu, K. T. Lee, and J. Cho, Adv. Energy Mater., 1, 34 (2011).
  30. R. Y. Wang, D. W. Kirk, and G. X. Zhang, J. Electrochem. Soc., 153, C357 (2006).
  31. M. V. Simicic, K. I. Popov, and N. V. Krstajic, J. Electroanal. Chem., 484, 18 (2000).
  32. X. G. Zhang, J. Power Sources, 163, 591 (2006).
  33. S. S. Chang, S. O. Yoon, H. J. Park, and A. Sakai, Applied Surface Science, 158, 330 (2000).
  34. Y. D. Cho and G. T. Fey, J. Power Sources, 184, 610 (2008).
  35. C. W. Lee, K. Sathiyanarayanan, S. W. Eom, and M. S. Yun, J. Power Sources, 160, 1436 (2006).
  36. R. J. Giliam, J. W. Graydon, D. W. Kirk, and S. J. Thorpe, Int. J. Hydrogen Energy, 32, 359 (2007).
  37. H. Yang, Y. Cao, X. Ai, and L. Xiao, J. Power Sources, 128, 97 (2004).
  38. R. K. Ghacami and Z. Rafiei, J. Power Sources, 162, 893 (2006).