Rechargeable Zn-air Energy Storage Cells Providing High Power Density

고출력.고에너지 밀도의 아연금속-공기전지

  • Park, Dong-Won (Lab. for Energy Storage System, Research Institute for Solar & Sustainable Energies (RISE)) ;
  • Kim, Jin Won (School of Environmental Science and Engineering) ;
  • Lee, Jae Kwang (Ertl center for Electrochemistry and Catalysis, Gwangju Institute of Science and Technology (GIST)) ;
  • Lee, Jaeyoung (Lab. for Energy Storage System, Research Institute for Solar & Sustainable Energies (RISE))
  • 박동원 (광주과학기술원 솔라에너지연구소 에너지저장 연구실) ;
  • 김진원 (환경공학부) ;
  • 이재광 (Ertl 실용촉매연구센터) ;
  • 이재영 (광주과학기술원 솔라에너지연구소 에너지저장 연구실)
  • Published : 2012.08.10

Abstract

Zn-Air energy storage cell is an attractive type of batteries due to its theoretical gravimetric energy density, cost-effective structure and environmental-friendly characteristics. The chargeability is the most critical in various industrial applications such as smart portable device, electric vehicle, and power storage system. Thus, it is necessary to reduce large overpotential of oxygen reduction/evolution reaction, the irreversibility of Zn anode, and carbonation in alkaline electrolyte. In this review, we try to introduce recent studies and developments of bi-functional air cathode, enhanced charge efficiency via modification of Zn anode structure, and blocking side reactions applying hybrid organic-aqueous electrolyte for high power density rechargeable Zn-Air energy storage cells.

References

  1. P. Sapkota and H. Kim, J. Ind. Eng. Chem., 15, 445 (2009). https://doi.org/10.1016/j.jiec.2009.01.002
  2. T. Ogasawara, A. Debart, M. Holzapfel, P. Novak, and P. G. Bruce, J. Am. Chem. Soc., 128, 1390 (2006). https://doi.org/10.1021/ja056811q
  3. D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen. M. Moshkovich, and E. Levi, Nature, 407, 724 (2000). https://doi.org/10.1038/35037553
  4. Y. Ma, N. Li, D. Li, M. Zhang, and X. Huang, J. Power Sources, 196, 2346 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.097
  5. J. R. Zabaleta, Zinc air fuel cell vehicles; Review of different technologies to obtain zinc from zinc oxide, Illinois Institute of Technology (2011).
  6. U. S. Patent 5,190,833, (1993).
  7. Website of MEET Co., Ltd. (Korea) : http://www.mee-t.com.
  8. M. Farnsworth, C. H. Kline, and J. G. Noltes, Zinc Chemicals, Zinc Development Association, London (1973).
  9. T. P. Dirkse, in Zinc-Silver Oxides Batteries, ed. A. Fleischer and J. Lander, 1, Electrochemical Society Inc., Princeton, NJ (1971).
  10. J. Kim, H. Lee, T. Oh, and S. Park, J. Korean Electrochem. Soc., 14, 231 (2011). https://doi.org/10.5229/JKES.2011.14.4.231
  11. K. Kinoshita, Electrochemical Oxygen Technology, Vol. I, 448, Wiley, New York (1992).
  12. V. Neburchilov, H. Wang, J. J. Martin, and W. Qu, J. Power Sources, 195, 1271 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.100
  13. U. S. Patent 5,318,862 (1994).
  14. A. Gibeney and D. Zuckerbrod, Power Source, ed. J. Thomson, 143, Academic, New York (1983).
  15. D. Tryk, W. Alfred, and E. Yeager. First Report for the period Oct.9,1980 to Apr.1.prepared by Western Reserve University. Subcontract 1377901 for Lawrence Livermore National Laboratory, Livermore, CA (1983).
  16. Y. Shimizu, H. Matsude, A. Nemoto, N. Miura, and N. Yamazoe, Progress in Batteries & Battery Materials, ed. H. Noguchi, 12, 108, ITE-JEC Press, Brunswick, Ohio (1993).
  17. Y. Shimizu, A. Nemoto, T. Hyodo, N. Miura, and N. Yamazoe, Denki Kagaku, 61, 1458 (1993).
  18. A. N. Jain, S. K. Tiwari, P. Chartier, and R. N. Singh, J. Chem. Soc., Faraday Trans., 91, 1871 (1995). https://doi.org/10.1039/ft9959101871
  19. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, and H. Dai, Nature Materials, 10, 780 (2011). https://doi.org/10.1038/nmat3087
  20. Y. Gorlin and T. F. Jaramillo, J. Am. Chem. Soc., 132, 13612 (2010). https://doi.org/10.1021/ja104587v
  21. Z. Chen, A. Yu, D. Higgings, H. Li, H. Wang, and Z. Chen, Nano Lett., 12, 1946 (2012). https://doi.org/10.1021/nl2044327
  22. H.-Y. Jung, Appli. Chem. Eng., 229, 125 (2011).
  23. L. Wang, X. Zhao, Y. Lu, M. Xu, D. Zhang, R. Ruoff, K. J. Stevenson, and J. B. Goodenough, J. Electrochem. Soc., 158, A1379 (2011). https://doi.org/10.1149/2.068112jes
  24. B. G. Demczyk and C. T. Liu, J. Electrochem. Soc., 129, 1159 (1982). https://doi.org/10.1149/1.2124079
  25. U. S. Patent 4,333,993 (1982).
  26. U. S. Patent 5,306,579 (1994).
  27. U. S. Patent 6,428,931 (2002).
  28. H. Meng and P. K. Shen, Electrochem. Commun., 8, 588 (2006). https://doi.org/10.1016/j.elecom.2006.01.020
  29. J. S. Lee, S. T. Kim, R. Cao, N. S. Choi, M. Liu, K. T. Lee, and J. Cho, Adv. Energy Mater., 1, 34 (2011). https://doi.org/10.1002/aenm.201000010
  30. R. Y. Wang, D. W. Kirk, and G. X. Zhang, J. Electrochem. Soc., 153, C357 (2006). https://doi.org/10.1149/1.2186037
  31. M. V. Simicic, K. I. Popov, and N. V. Krstajic, J. Electroanal. Chem., 484, 18 (2000). https://doi.org/10.1016/S0022-0728(00)00035-8
  32. X. G. Zhang, J. Power Sources, 163, 591 (2006). https://doi.org/10.1016/j.jpowsour.2006.09.034
  33. S. S. Chang, S. O. Yoon, H. J. Park, and A. Sakai, Applied Surface Science, 158, 330 (2000). https://doi.org/10.1016/S0169-4332(00)00039-8
  34. Y. D. Cho and G. T. Fey, J. Power Sources, 184, 610 (2008). https://doi.org/10.1016/j.jpowsour.2008.04.081
  35. C. W. Lee, K. Sathiyanarayanan, S. W. Eom, and M. S. Yun, J. Power Sources, 160, 1436 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.019
  36. R. J. Giliam, J. W. Graydon, D. W. Kirk, and S. J. Thorpe, Int. J. Hydrogen Energy, 32, 359 (2007). https://doi.org/10.1016/j.ijhydene.2006.10.062
  37. H. Yang, Y. Cao, X. Ai, and L. Xiao, J. Power Sources, 128, 97 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.050
  38. R. K. Ghacami and Z. Rafiei, J. Power Sources, 162, 893 (2006). https://doi.org/10.1016/j.jpowsour.2005.07.010