Kinetic Study on the Oxidation Reaction of Substituted Benzyl Alcohols by Cr(VI)-Heterocyclic Complex (2,2'-Bipyridinium Dichromate)

크롬(VI)-헤테로고리 착물(2,2'-Bipyridinium Dichromate)에 의한 치환 벤질 알코올류의 산화반응에 대한 속도론적 연구

  • Kim, Young Sik (Department of Chemical Engineering, Kangwon National University) ;
  • Park, Young Cho (Department of Chemical Engineering, Kangwon National University)
  • 김영식 (강원대학교 화학공학과) ;
  • 박영조 (강원대학교 화학공학과)
  • Published : 2012.04.10

Abstract

Cr(VI)-heterocyclic complex (2,2'-bipyridinium dichromate) was synthesized by the reaction between of 2,2'-bipyridine and chromium trioxide in $H_2O$, and characterized by IR and ICP. The oxidation of benzyl alcohol using 2,2'-bipyridinium dichromate in various solvents showed that the reactivity increased with the increase of the dielectric constant, in the order: cyclohexene < chloroform < acetone < N,N-dimethylformamide. In the presence of DMF solvent with acidic catalyst such as $H_2SO_4$ solution, 2,2'-bipyridinium dichromate oxidized the benzyl alcohol and its derivatives (p-$p-OCH_3$, $m-CH_3$, H, $m-OCH_3$, m-Cl, $m-NO_2$). Electron-donating substituents accelerated the reaction, whereas electron acceptor groups retarded the reaction. The Hammett reaction constant was -0.66 (303 K). The observed experimental data was used to rationalize the hydride ion transfer in the rate-determining step.

References

  1. K. K. Banerji, Bull. Chem. Soc. Japan., 61, 1767 (1988). https://doi.org/10.1246/bcsj.61.1767
  2. J. F. Kuo, Bull. Chem. Soc. Japan., 64, 3059 (1991). https://doi.org/10.1246/bcsj.64.3059
  3. M. K. Mahanti and D. Dey, J. Org. Chem., 55, 5848 (1990). https://doi.org/10.1021/jo00310a015
  4. M. K. Mahanti, Bull. Korean Chem. Soc., 4, 120 (1983).
  5. G. P. Panigrahi, Bull. Korean Chem. Soc., 13, 547 (1992).
  6. M. K. Mahanti, B. Kuotsu, and E. Tiewsoh, J. Org. Chem., 61, 8875 (1996). https://doi.org/10.1021/jo961079m
  7. H. B. Davis, R. M. Sheets, and W. W. Pandler, Heterocycles., 22, 2029 (1984). https://doi.org/10.3987/R-1984-09-2029
  8. M. R. Pressprich, R, D. Willett, and H. B. Davis, Inorg. Chem., 27, 260 (1988). https://doi.org/10.1021/ic00275a009
  9. M. H. Cho, J. H. Kim, and H. B. Park, J. Korean Chem. Soc., 33, 366 (1989).
  10. G. D. Yadav, J. Phys Chem., 101, 36 (1997). https://doi.org/10.1021/jp961678x
  11. M. K. Mahanti, Bull. Chem. Soc. Japan., 67, 2320 (1994). https://doi.org/10.1246/bcsj.67.2320
  12. M. K. Mahanti, J. Org. Chem., 58, 4925 (1993). https://doi.org/10.1021/jo00070a031
  13. I. S. Koo, J. S. Kim, and S. K. An, J. Korean Chem, Soc., 43, 527 (1999).
  14. R. Tayebee, J. Korean Chem. Soc., 52, 23 (2008). https://doi.org/10.5012/jkcs.2008.52.1.023
  15. R. Y. Sung, H. Choi, and I. S. Koo, Bull. Korean Chem. Soc., 30, 1579 (1988).
  16. Y. S. Kim, H. Choi, and I. S. Koo, Bull. Korean Chem. Soc., 31, 3279 (2010). https://doi.org/10.5012/bkcs.2010.31.11.3279
  17. R. D. Gilliom, Introduction to Physical Organic Chemistry, Addison-Wesley, 172 (1992).
  18. R. Breslow, Organic Reaction Mechanism, Addison-Wesley, 360 (1995).