A Study on The Preparation of Poly(alkyl methacrylate-co-maleic anhydride) as Cold Flow Improvers for Biodiesel Fuels

바이오디젤용 저온 유동성 향상제로서의 폴리 (알킬메타크릴레이트-공-무수말레인산) 제조 연구

  • Hong, Jin-Sook (Integrated Chemistry Research Division, Industrial Bio-based Materials Research Group, KRICT) ;
  • Chung, Keun-Wo (Integrated Chemistry Research Division, Industrial Bio-based Materials Research Group, KRICT) ;
  • Kim, Young-Wun (Integrated Chemistry Research Division, Industrial Bio-based Materials Research Group, KRICT) ;
  • Kim, Nam-Kyun (Integrated Chemistry Research Division, Industrial Bio-based Materials Research Group, KRICT) ;
  • Im, Dae-Jae (EMAX Solutions CO., LTD.)
  • 홍진숙 (한국화학연구원 융합화학연구본부 산업바이오화학연구그룹) ;
  • 정근우 (한국화학연구원 융합화학연구본부 산업바이오화학연구그룹) ;
  • 김영운 (한국화학연구원 융합화학연구본부 산업바이오화학연구그룹) ;
  • 김남균 (한국화학연구원 융합화학연구본부 산업바이오화학연구그룹) ;
  • 임대재 ((주)이맥솔루션)
  • Published : 2012.04.10

Abstract

Bio-diesel (BD) is the mono alkyl esters of long chain fatty acids derived from renewable feed stocks like vegetable oils or animal fats. Bio-diesel shows poorer fuel properties than that of diesel fuel in a cold condition. For the diesel fuel, many cold flow improvers have been developed; however, since primary ingredients of bio-diesel are different from those of the diesel fuel, there is a limit to the cold flow improvement when the same cold flow improvers are added to bio diesel. In this study, to improve low temperature properties of bio-diesel, we developed a cold flow improver using an alkyl methacrylate monomer, prepared via ester reaction, and maleic anhydride and also conducted a ring opening reaction using amine. We characterized the products using $^1H-NMR$, FT-IR and GPC methods. In addition, the cold flow improvements of the products in Soybean BD and Palm BD in the concentration rage of 1000~10000 ppm were investigated. It was found that the addition of LMA2SMA6MA2-C8A in Soybean BD improved the pour point by $12.5\;^{\circ}C$.

References

  1. Y. K. Hong and W. H. Hong, Korean Chem. Eng. Res., 45, 424 (2007).
  2. N. U. Soriano Jr, R. Venditti, and D. S. Argyropoulos, Fuel, 88, 560 (2009). https://doi.org/10.1016/j.fuel.2008.10.013
  3. N. U. Soriano Jr, V. P. Migo, and M. Matsumur, Fuel, 85, 25 (2006). https://doi.org/10.1016/j.fuel.2005.06.006
  4. A. Bouaid, M. Martinez, and J. Aracil, Bioresource Technology, 100, 2234 (2009). https://doi.org/10.1016/j.biortech.2008.10.045
  5. Y. D. Yang, Y. W. Kim, K. W. Chung, D. H. Hwang, and M. H. Hong, J. Korean Ind. Eng. Chem., 19, 497 (2008).
  6. Y. Song, T. Ren, X. Fu, and X. Xu, Fuel Processing Technology, 86, 641 (2005). https://doi.org/10.1016/j.fuproc.2004.05.011
  7. A. M. Al-Sabagh, M. R. Noor El-Din, R. E. Morsi, and M. Z. Elsabee, Journal of Petroleum Science and Engineering, 65, 139 (2009). https://doi.org/10.1016/j.petrol.2008.12.022
  8. American Society for testing and Materials, ASTM designation, D97-05 Philadelphipa (2005).
  9. American Society for testing and Materials, ASTM designation, D6371-05, Philadelphipa (2005).
  10. R. A. Soldi, A. R. S. Oliverira, R. V. Barbosa, and M. A. F. Cesar-Oliveira, European Polymer Journal, 43, 3671 (2007). https://doi.org/10.1016/j.eurpolymj.2006.07.021
  11. I. M. El-Gamal, T. T. Khidr, and F. M. Ghuiba, Fuel, 77, 375 (1998).
  12. G. Chen, Y. Zhang, X. Zhou, and J. Xu, Applied Surface Science, 253, 1107 (2006). https://doi.org/10.1016/j.apsusc.2006.01.068
  13. V. A. Adewusi, Petrol. Sci. Technol., 16, 953 (1998). https://doi.org/10.1080/10916469808949819
  14. G. A. Holder and J. Winker, J. Inst. Pet., 51, 243 (1965).
  15. R. Kern and R. Dassonville, J. Crystal Growth, 116, 191 (1992). https://doi.org/10.1016/0022-0248(92)90129-7
  16. D. H. M. Beiny, J. W. Mulln, and K. Lewtas, J. Crystal Growth, 102, 801 (1990). https://doi.org/10.1016/0022-0248(90)90845-C
  17. Y. K. Lim, C. H. Jeon, S. Kim, E. S. Yim, H. O. Song, S. C. Sin, and D. K. Kim, Korean Chem. Eng. Res., 47, 237 (2009).