Reaction Kinetics for Steam Reforming of Ethane over Ru Catalyst and Reactor Sizing

루테늄 촉매를 이용한 에탄의 수증기 개질 반응 Kinetics와 반응기 Sizing

  • Shin, Mi (Department of Chemical Engineering, Kongju National University) ;
  • Seong, Minjun (Department of Chemical Engineering, Kongju National University) ;
  • Jang, Jisu (Department of Chemical Engineering, Kongju National University) ;
  • Lee, Kyungeun (Department of Chemical Engineering, Kongju National University) ;
  • Cho, Jung-Ho (Department of Chemical Engineering, Kongju National University) ;
  • Lee, Young-Chul (Korea Gas Co. R & D Division) ;
  • Park, Young-Kwon (School of Environmental Engineering, University of Seoul) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University)
  • 신미 (공주대학교 화학공학부) ;
  • 성민준 (공주대학교 화학공학부) ;
  • 장지수 (공주대학교 화학공학부) ;
  • 이경은 (공주대학교 화학공학부) ;
  • 조정호 (공주대학교 화학공학부) ;
  • 이영철 (한국가스공사 연구개발원) ;
  • 박영권 (서울시립대학교 환경공학부) ;
  • 전종기 (공주대학교 화학공학부)
  • Published : 2012.04.10

Abstract

In this study, kinetics data was obtained for steam reforming reaction of ethane over the commercial ruthenium catalyst. The variables of ethane steam reforming were the reaction temperature, partial pressure of ethane, and steam/ethane mole ratio. Parameters for the power rate law kinetic model and the Langmuir-Hinshelwood model were obtained from the kinetic data. Also, sizing of steam reforming reactor was performed by using PRO/II simulator. The reactor size calculated by the power rate law kinetic model was bigger than that of using the Langmuir-Hinshelwood model for the same conversion of ethane. Reactor size calculated by the Langmuir-Hinshelwood model seems to be more suitable for the reactor design because the Langmuir-Hinshelwood model was more consistent with the experimental results.

References

  1. C. H. Park, K. S. Kim, J. W. Jun, S. Y. Cho, and Y. K. Lee, J. Korean Ind. Eng. Chem., 20, 186 (2009).
  2. A. J. Vizcaino, A. Carrero, and J. A. Calles, Int. J. Hydrogen Energy, 32, 1450 (2007). https://doi.org/10.1016/j.ijhydene.2006.10.024
  3. T. S. Christensen, Appl. Catal. A Gen., 138, 285 (1996). https://doi.org/10.1016/0926-860X(95)00302-9
  4. P. O. Graf, B. L. Mojet, J. G. van Ommen, and L. Lefferts, Appl. Catal. A Gen., 332, 310 (2007). https://doi.org/10.1016/j.apcata.2007.08.032
  5. J. H. Jeong, J. W. Lee, D. J. Seo, Y. Seo, W. L. Yoon, D. K. Lee, and D. H. Kim, Appl. Catal. A Gen., 302, 151(2006). https://doi.org/10.1016/j.apcata.2005.12.007
  6. L. P. R. Profeti, E. A. Ticianelli, and E. M. Assaf, Fuel, 87, 2076 (2008). https://doi.org/10.1016/j.fuel.2007.10.015
  7. K. M. Hardiman, T. T. Ying, A. A. Adesina, E. M. Kennedy, and B. Z. Dlugorski, Chem. Eng. J., 102, 119 (2004). https://doi.org/10.1016/j.cej.2004.03.005
  8. J. G. Seo, M. H. Youn, J. C. Jung, and I. K. Song, Int. J. Hydrogen Energy, 34, 5409 (2009). https://doi.org/10.1016/j.ijhydene.2009.05.042
  9. T. Sperle, D. Chen, R. Lodeng, and A. Holmen, Appl. Catal. A Gen., 282, 195 (2005). https://doi.org/10.1016/j.apcata.2004.12.011
  10. B. T. Schadel, M. Duisberg, and O. Deutschmann, Catalysis Today, 142, 42 (2009). https://doi.org/10.1016/j.cattod.2009.01.008
  11. K. Hou and R. Hughes, Chem. Eng. J., 82, 311 (2001). https://doi.org/10.1016/S1385-8947(00)00367-3
  12. S. S. Maluf and E. M. Assaf, Fuel, 88, 1547 (2009). https://doi.org/10.1016/j.fuel.2009.03.025
  13. M. Leventa, D. J. Gunn, and M. A. El-Bousi, Int. J. Hydrogen Energy, 28, 945 (2003). https://doi.org/10.1016/S0360-3199(02)00195-7
  14. V. R. Choudhary and K. C. Mondal, Appl. Energy, 83, 1024 (2006). https://doi.org/10.1016/j.apenergy.2005.09.008
  15. Z. A. Aboosadi, M. R. Rahimpour, and A. Jahanmiri, Int. J. Hydrogen energy, 36, 2960 (2011). https://doi.org/10.1016/j.ijhydene.2010.12.005
  16. M. Zeppieri, P. L. Villa, N. Verdone, M. Scarsella, and P. D. Filippis, Appl. Catal. A Gen., 387, 147 (2010). https://doi.org/10.1016/j.apcata.2010.08.017
  17. W. H. Lee, Master Dissertation, Kongju National University, Gongju, Korea (2011).
  18. Y. Zhan, D. Li, K. Nishida, T. Shishido, Y. Oumi, T. Sano, and K. Takehira, Appl. Catal. A Gen., 356, 231 (2009). https://doi.org/10.1016/j.apcata.2009.01.015
  19. D. Li, K. Nishida, Y. Zhan, T. Shishido, Y. Oumi, T. Sano, and K. Takehira, Appl. Clay Sci., 43, 49 (2009). https://doi.org/10.1016/j.clay.2008.07.014
  20. H. Chon and G. Seo, Introduction of Catalysis, 4th edition, 205, Hanrimwon, Korea (2002).