A Study on Characterization for Low Temperature SCR Reaction by $Mn/TiO_2$ Catalysts with Using a Various Commercial $TiO_2$ Support

다양한 상용 $TiO_2$ 담체를 이용한 $Mn/TiO_2$ 촉매의 저온 SCR 반응 특성 연구

  • Kwon, Dong Wook (Department of Environmental Energy Systems Engineering, Graduate School of Kyonggi University) ;
  • Choi, Hyun Jin (Department of Green Process R&D, Green Chemistry & Manufacturing System Division, Korea Institute of Industrial Technology) ;
  • Park, Kwang Hee (Department of Environmental Energy Systems Engineering, Graduate School of Kyonggi University) ;
  • Hong, Sung Chang (Department of Environmental Energy Systems Engineering, Graduate School of Kyonggi University)
  • 권동욱 (경기대학교 일반대학원 환경에너지시스템공학과) ;
  • 최현진 (한국생산기술연구원 청정생산시스템연구본부) ;
  • 박광희 (경기대학교 일반대학원 환경에너지시스템공학과) ;
  • 홍성창 (경기대학교 일반대학원 환경에너지시스템공학과)
  • Published : 2012.04.10

Abstract

10 wt% Mn supported on various commercial $TiO_2$ catalysts were prepared by wet-impregnation method for the low temperature selective catalytic reduction (SCR) of NO with $NH_3$. A combination of various physico-chemical techniques such as BET, XRD, XPS and TPR were used to characterize these catalysts. MnOx surface densities on MnOx/$TiO_2$ catalyst were related to surface area. As MnOx surface density lowered with high dispersion, the SCR activity for low temperature was increased and the reduction temperature ($MnO_2$ ${\rightarrow}$ $Mn_2O_3$) of surface MnOx was lower. For a high SCR, MnOx could be supported on a high surface area of $TiO_2$ and should be existed a high dispersion of non-crystalline species.

References

  1. A. Fritz and V. Pitchon, Appl. Catal. B, 13, 1 (1997). https://doi.org/10.1016/S0926-3373(96)00102-6
  2. P. Forzatti, Appl. Catal. A, 222, 221 (2001). https://doi.org/10.1016/S0926-860X(01)00832-8
  3. H. Karge, Handbook of Heterogeneous Catalysis, 2nd edn, 5 (2008).
  4. S. H. Hong, J. Y. Lee, S. P. Cho, and S. C. Hong, Prospectives of Industrial Chemistry, 8, 2 (2005).
  5. D. Rehder, Detoxification of Heavy Metals, 30, 205 (2011).
  6. F. Kapteijn, L. Singoredjo, A. Andreini, and J. Moulijn, Appl. Catal. B, 3, 173 (1994). https://doi.org/10.1016/0926-3373(93)E0034-9
  7. X. Tang, J. Hao and W. Xu, and J. Li, Catal. Commun., 8, 329 (2007). https://doi.org/10.1016/j.catcom.2006.06.025
  8. T. S. Park, S. K. Jeong, S. H. Hong, and S. C. Hong, Ind. Eng. Chem. Res., 40, 4491 (2001). https://doi.org/10.1021/ie010218+
  9. M. Kang, E. D. Park, J.M. Kim, and J. E. Yie, Catal. Today, 111, 236 (2006). https://doi.org/10.1016/j.cattod.2005.10.032
  10. G. Qi, R. T. Yang, and R. Chang, Appl. Catal. B, 51, 93 (2004). https://doi.org/10.1016/j.apcatb.2004.01.023
  11. G. Qi and R. T. Yang, J. Catal., 217, 434 (2003). https://doi.org/10.1016/S0021-9517(03)00081-2
  12. M. Kang, E. D. Park, J. M. Kim, and J. E. Yie, Appl. Catal. A, 327, 261 (2007). https://doi.org/10.1016/j.apcata.2007.05.024
  13. W. S. Kijlstra, J. C. M. L. Daamen, J. M. van de Graaf, B. van der Linden, E. K. Poels, and A. Bliek, Appl. Catal. B, 7, 337 (1996). https://doi.org/10.1016/0926-3373(95)00052-6
  14. W. Sjoerd Kijlstra, M. Biervliet, E. K. Poels, and A. Bliek, Appl. Catal. B, 16, 327 (1998). https://doi.org/10.1016/S0926-3373(97)00089-1
  15. L. Singoredjo, R. Korver, F. Kapteijn, and J. Moulijn, Appl. Catal. B, 1, 297 (1992). https://doi.org/10.1016/0926-3373(92)80055-5
  16. G. Qi and R. T. Yang, Appl. Catal. B, 60, 13 (2005). https://doi.org/10.1016/j.apcatb.2005.01.012
  17. A. Z. Ma and W. Grunert, Chem. Commun., 71 (1999).
  18. J. Li, J. Chen, R. Ke, C. Luo, and J. Hao, Catal. Commun., 8, 1896 (2007). https://doi.org/10.1016/j.catcom.2007.03.007
  19. Z. Wu, R. Jin, Y. Liu, and H. Wang, Catal. Commun., 9, 2217 (2008). https://doi.org/10.1016/j.catcom.2008.05.001
  20. Z. Wu, B. Jiang, Y. Liu, W. Zhao, and B. Guan, J. Hazard. Mater., 145, 488 (2007). https://doi.org/10.1016/j.jhazmat.2006.11.045
  21. B. Jiang, Y. Liu, and Z. Wu, J. Hazard. Mater., 162, 1249 (2009). https://doi.org/10.1016/j.jhazmat.2008.06.013
  22. P. G. Smirniotis, P. M. Sreekanth, D. A. Pena, and R. G. Jenkins, Ind. Eng. Chem. Res., 45, 6436 (2006). https://doi.org/10.1021/ie060484t
  23. F. Kapteijn, A. D. V. Langeveld, J. A. Moulijn, and A. Andrein, J. Catal., 150, 94 (1994). https://doi.org/10.1006/jcat.1994.1325
  24. P. R. Ettireddy, N. Ettireddy, S. Mamedov, P. Boolchand, and P. G. Smirniotic, Appl. Catal. B, 76, 123 (2007). https://doi.org/10.1016/j.apcatb.2007.05.010
  25. P. G. Smirniotics, P. M. Sreekanth, D. A. Pena, and R. G. Jenkins, Ind. Eng. Chem. Res., 45, 6436 (2006). https://doi.org/10.1021/ie060484t
  26. A. Sorrentino, S. Rega, D. Sannini, A. Nagliano, P. Ciambeli, and E. Santacesaria, Appl. Catal. A, 209, 45 (2001). https://doi.org/10.1016/S0926-860X(00)00742-0