Cellular Protective Effects of Peanut Sprout Root Extracts

땅콩나물 뿌리 추출물의 세포 보호 효과

  • 조나래 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 박찬일 (서울과학고등학교) ;
  • 박채원 (서울과학고등학교) ;
  • 신동한 (서울과학고등학교) ;
  • 황윤찬 (서울과학고등학교) ;
  • 김용현 (서울과학고등학교) ;
  • 박수남 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소)
  • Published : 2012.04.10

Abstract

In this study, the cellular protective effect and antioxidative property of peanut sprout root extracts were investigated. Cellular protective effects of peanut sprout root extracts on the rose-bengal sensitized photohemolysis of human erythrocytes were investigated. The ethyl acetate fraction of extracts exhibited a cellular protective effect in a concentration dependent manner. Particularly, the aglycone fraction of extracts showed prominent cellular protective effects in a concentration range (5~50 ${\mu}g/mL$). They are more effective than that of (+)-${\alpha}$-tocopherol, known as a lipid peroxidation chain blocker. Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) of peanut sprout root extracts on ROS generated in $Fe^{3+}$-EDTA/$H_2O_2$ system were investigated using the luminol-dependent chemiluminescence assay. The ethyl acetate fraction of extracts ($OSC_{50}$; 1.59 ${\mu}g/mL$) showed a similar ROS scavenging activity compare with that of L-ascorbic acid (1.50 ${\mu}g/mL$), known as a strong antioxidant. On the other hand, the order of free radical (1,1-diphenyl-2-picrylhydraxyl, DPPH) scavenging activity ($FSC_{50}$) was (+)-${\alpha}$-tocopherol > 80% MeOH extract > aglycone fraction > ethyl acetate fraction. These results indicate that peanut sprout root extracts can function as an antioxidant in biological systems, particularly skin exposed to solar UV radiation by scavenging $^1O_2$ and other ROS, and to protect cellular membranes against ROS.

References

  1. Korean Geriatrics Society, Textbook of geriatric medicine 2nd ed, 28, Medical Publishing, Seoul (2005).
  2. W. Meinhard, T. B. Iiana, N. Lale, M. Wenjian, A. S. Lars, R. W. Ziba, S. Jutta, and S. K. Karin, J. Photochem. Photobiol., B, 63, 41 (2001). https://doi.org/10.1016/S1011-1344(01)00201-9
  3. F. Afaq, V. M. Adhami, and H. Mukhtar, Mutat. Res., 571, 153 (2005). https://doi.org/10.1016/j.mrfmmm.2004.07.019
  4. M. A. Bachelor and G. T. Bowden, Cancer Biol., 14, 131 (2004). https://doi.org/10.1016/j.semcancer.2003.09.017
  5. J. Pincemail, In Analysis of Free radicals in Biology Systems, ed. A. E. Favier, J. Cadet, B. Kalyanaraman, M. Fontecave, and J.-L. Pierre, 83, Birkhauser Verlag Basel, Switzerland (1995).
  6. J. R. Kanofsky, H. Hoogland, R. Wever, and S. J. Weiss, J. Biol. Chem., 263, 9692 (1988).
  7. A. Oikarinen, J. Karvonen, J. Uitto, and M. Hannuksela, Photodermatology, 2, 15 (1985).
  8. A. Oikarinen and M. Kallioinen, Photodermatology, 6, 24 (1989).
  9. L. H. Kilgman, Biological responses to Ultraviolet A Radiation, ed. F. Urbach, 209 Valdemar, Overland Park (1992).
  10. K. Scharffetter-Kochanek, Advances in Pharmacology. ed. H. Sies, 38, 639 (1997).
  11. K. Scharffetter-Kochanek, M. Wlaschek, K. Briviba, and H. Sies, FEBS Lett., 331, 304 (1993). https://doi.org/10.1016/0014-5793(93)80357-Z
  12. M. Wlaschek, K. Briviba, G. P. Stricklin, H. Sies, and K. Scharffetter-Kochanek, J. Invest. Dermatol., 104, 194 (1995). https://doi.org/10.1111/1523-1747.ep12612751
  13. J. H. Kim, S. J. Yoon, K. H. Lee, H. J. Kwon, S. S. Chun, T. W. Kim, and Y. J. Cho, J. Korean Soc. Appl. Biol., Chem., 48, 173 (2005).
  14. J. C. Fantone and P. A. Ward, Ann. J. Path., 107, 397 (1982).
  15. K. J. A. Davies, J. Biol. Chem., 262, 9895 (1987).
  16. C. S. Foote, Free Radical in Biology, ed. W. A. Pryor, 2, 85, Acdemic press, New Yok (1976).
  17. B. A. Jurkiewicx and G. R. Buettner, Photochem. Photobiol., 59, 1 (1994). https://doi.org/10.1111/j.1751-1097.1994.tb04993.x
  18. L. Packer, Free radical Damage and its Control, eds. C. A. Rice-Evans and R. H. Burdon, 239, Elsecier Science B. V (1994).
  19. B. A. Jurkiewicx, D. L. Bissett, and G. R. Buettner, J. Invest. Dermatol., 104, 474 (1995).
  20. N. Ito, S. Fukushima, A. Hagiwara, M. Shibata, and T. Ogiso, J. Natl. Cancer Inst., 70, 343 (1983).
  21. A. L. Branen, J. Am. Oil Chem. Soc., 25, 59 (1975).
  22. Y. G. Kim, Antioxidant, 179, Ryo Moon Gak, Seoul, Korea (2004).
  23. D. K. Lim, U. Choi, and D. H. Shin, Korean J. Food Sci. Technol., 28, 83 (1996).
  24. H. K. Kim, Y. E. Kim, J. R. Do, Y. C. Lee, and B. Y. Lee, Korean J. Food Sci, Technol., 27, 80 (1995).
  25. J. Y. Cha and Y. S. Cho, J. Korean Soc. Food Nutr., 28, 131 (1999).
  26. M. H. Kim, M. C. Kim, J. S. Park, E. J. Park, and J. O. Lee, Korean J. Food Sci, Technol., 31, 273 (1999).
  27. E. N. Frankel, Food Chem., 57, 51 (1996) https://doi.org/10.1016/0308-8146(96)00067-2
  28. M. J. Lee, Y. K. Cheong, H. S. Kim, K. H. Park, H. S. Doo, and D. Y. Suh, Korean J Crop Sci., 48, 429 (2003).
  29. S. E. Lee, C. H. Park, J. K. Bang, N. S. Seong, and T. Y. Chung, J Korean Soc. Food Sci. Nutr., 33, 941 (2004). https://doi.org/10.3746/jkfn.2004.33.6.941
  30. H. I. Kang, J. Y. Kim, K. W. Park, J. S. Kang, M. R. Choi, K. D. Moon, and K. I. Seo, Korean J. Food Preserv., 17, 384 (2010)
  31. H. I. Kang, J. T. Kim, S. J. Kwon, K. W. Park, J. S. Kang, and K. I. Seo, J Korean Soc. Food Sci. Nutr., 39, 941 (2010). https://doi.org/10.3746/jkfn.2010.39.7.941