The Methane Reforming by $CO_2$ Using Pelletized Co-Ru-Zr-Si Catalyst

성형 Co-Ru-Zr-Si 촉매를 이용한 이산화탄소에 의한 메탄 리포밍

  • Nam, Jeong-Kwang (Environment & Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Lee, Ji-Hye (Green Chemistry and Environmental Biotechnology, University of Science and Technology) ;
  • Song, Sang-Hoon (Environment & Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Ahn, Hong-Chan (Environment & Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Chang, Tae-Sun (Environment & Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Suh, Jeong-Kwon (Environment & Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Seong-Bo (Environment & Research Center, Korea Research Institute of Chemical Technology (KRICT))
  • 남정광 (한국화학연구원 환경자원연구센터) ;
  • 이지혜 (과학기술연합대학원대학교(UST)) ;
  • 송상훈 (한국화학연구원 환경자원연구센터) ;
  • 안홍찬 (한국화학연구원 환경자원연구센터) ;
  • 장태선 (한국화학연구원 환경자원연구센터) ;
  • 서정권 (한국화학연구원 환경자원연구센터) ;
  • 김성보 (한국화학연구원 환경자원연구센터)
  • Published : 2012.04.10

Abstract

The methane dry reforming has received the considerable attention in recent years, mainly as an attractive route to produce synthesis gas (CO, $H_2$) from green-house gases ($CH_4$, $CO_2$) for resources. However, this process has not been commercialized due to the high temperature and catalyst deactivation. In this study, Co-Ru-Zr catalysts supported on $SiO_2$ were studied for the characterization of methane dry reforming reaction and the preliminary data for process development were achieved. The crystal structure of catalysts was measured by XRD, the surface area and pore size were analyzed by BET, and the element composition of catalyst were analyzed by EDS. Conversions of methane and carbon dioxide were analyzed by GC. In addition, reaction rate constants were obtained from the reaction kinetic study and the optimum catalyst size that does not affect mass transfer from reactants was also determined. The selected pellet-type catalyst maintained activation for 720 h at $850^{\circ}C$.

References

  1. J. D. Lee, M G. Kang, and T. J. Lee, Korean Chem. Eng. Res., 47, 17 (2009).
  2. J. S. Lee, et al., Korean Chem. Eng. Res., 47, 267 (2009).
  3. J. T. Richardson, M. Garrait, and J. K. Hung, Appl. Catal. A, 255, 69 (2003). https://doi.org/10.1016/S0926-860X(03)00645-8
  4. U. L. Portugal, A. Santos, S. Damyanova, C. Marques, and J. Bueno, J. Mol. Catal., 184, 311 (2002). https://doi.org/10.1016/S1381-1169(02)00018-3
  5. A. Erdohelyi, J. Cserenyi, and F. Solymosi, J. Catal., 141, 287 (1993). https://doi.org/10.1006/jcat.1993.1136
  6. M. C. J. Bradford and M. A. Vannice, Catal. Rev. Sci. Eng., 41, 1 (1999). https://doi.org/10.1081/CR-100101948
  7. E. Ruckenstein and H. Y. Wang, J. Catal., 205, 289 (2002). https://doi.org/10.1006/jcat.2001.3458
  8. J. M. Wei and E. Eglesia, J. Catal., 185, 496 (1999). https://doi.org/10.1006/jcat.1999.2523
  9. J. R. Rostrup-Nielsen and J. H. B. Hansen, J. Catal., 144, 38 (1993). https://doi.org/10.1006/jcat.1993.1312
  10. M. C. J. Bradford and M. A. Vannice, Appl. Catal. A, 142, 73 (1996). https://doi.org/10.1016/0926-860X(96)00065-8
  11. A. Donazzi, A. Beretta, G. Groppi, and P. Forzatti, J. Catal., 255, 241 (2008). https://doi.org/10.1016/j.jcat.2008.02.009
  12. A. Donazzi, A. Beretta, G. Groppi, and P. Forzatti, J. Catal., 255, 259 (2008). https://doi.org/10.1016/j.jcat.2008.02.010
  13. M. Maestri, Ph.D thesis, Politecnico di Milano, Milano, Italy (2008).
  14. A. Horvath, G. Stefler, O. Geszti, A. Kienneman, A. Pietraszka, and L. Guczi, Catalysis Today, 169, 102 (2011). https://doi.org/10.1016/j.cattod.2010.08.004