Effect of Adding Isopropylphenyl Diphenyl Phosphate on Isothermal Crystallization Behavior and Flame Retardancy of PLA Film

Isopropylphenyl Diphenyl Phosphate 첨가가 PLA필름의 등온결정화 거동과 방염특성에 미치는 영향

  • Kim, Moon-Sun (Bio/Nano-Fusion Material Research Center, Sungkyunkwan University) ;
  • Kim, Gyusun (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Kim, Byung-Woo (Department of Chemical Engineering, Sungkyunkwan University)
  • 김문선 (성균관대학교 바이오/나노융합재료연구센터) ;
  • 김규선 (성균관대학교 화학공학과) ;
  • 김병우 (성균관대학교 화학공학과)
  • Published : 2012.04.10

Abstract

In the study, the effects of $130{\sim}150^{\circ}C$ annealing condition and 1~10 wt% isopropylphenyl diphenyl phosphate (IPPP) on crystallization behavior and flame retardancy of a full name (PLA) film were determined. The crystallization kinetics of PLA films with adding 1, 5, and 10 wt% IPPP at $140^{\circ}C$ were higher than those at 130 and $150^{\circ}C$. The average crystallinity and crystallite size of PLA film with 1 wt% IPPP were 21.3% and 24.8 nm, respectively. With an increasing IPPP content, the crystallinity of PLA film increased and the crystallite size decreased. The burning rate lowered with an increasing IPPP content as well.

References

  1. S. S. Ray and M. Okamoto, Macromol. Rapid Commun., 24, 815 (2003). https://doi.org/10.1002/marc.200300008
  2. R. E. Drumright, P. R. Gruber, and D. E. Henton, Adv. Mater., 12, 1841 (2000). https://doi.org/10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
  3. J. Lunt, Polym. Degrad. Stab., 59, 145 (1998). https://doi.org/10.1016/S0141-3910(97)00148-1
  4. Q. Fang and M. A. Hanna, Ind. Crop. Prod., 10, 47 (1999). https://doi.org/10.1016/S0926-6690(99)00009-6
  5. N. Kawamoto, A. Sakai, T. Horikoshi, T. Urushihara, and E. Tobita, J. Appl. Polym. Sci., 103, 244 (2007). https://doi.org/10.1002/app.25185
  6. M. Baiardo, G. Frisoni, M. Scandola, M. Rimelen, D. Lips, K. Ruffieux, and E. Wintermantel, J. Appl. Polym. Sci., 90, 1731 (2003). https://doi.org/10.1002/app.12549
  7. W. Zhai, Y. Ko, W. Zhu, A. Wong, and C. B. Park, Int. J. Mol. Sci., 10, 5381 (2009). https://doi.org/10.3390/ijms10125381
  8. H. Li and M. A. Huneault, Polymer, 48, 6855 (2007). https://doi.org/10.1016/j.polymer.2007.09.020
  9. N. P. G. Suardana, M. S. Ku, and J. K. Lim, Mater. Design, 32, 1990 (2011). https://doi.org/10.1016/j.matdes.2010.11.069
  10. J. Kim, M. S. Kim, and B. W. Kim, Korean Chem. Eng. Res., 49, 611 (2011). https://doi.org/10.9713/kcer.2011.49.5.611
  11. G. Z. Papageorgiou, D. S. Achilias, D. N. Bikiaris, and G. P. Karayannidis, Thermochim. Acta., 427, 117 (2005). https://doi.org/10.1016/j.tca.2004.09.001
  12. H. Xiao, L. Yang, X. Ren, T. Jiang, and J. T. Yeh, Polym. Composite, 31, 2057 (2010). https://doi.org/10.1002/pc.21004
  13. L. T. Lim, R. Auras, and M. Rubino, Prog. Polym. Sci., 33, 820 (2008). https://doi.org/10.1016/j.progpolymsci.2008.05.004
  14. S. N. Danilchenko, O. G. Kukharenko, C. Moseke, I. Y. Protsenko, L. F. Sukhodub, and B. Sulkio-Cleff, Crystal. Res. Technol., 37, 1234 (2002). https://doi.org/10.1002/1521-4079(200211)37:11<1234::AID-CRAT1234>3.0.CO;2-X
  15. H. C. Kim, H. S. Lee, H. Y. Kim, P. K. Pak, and B. O. Lee, Polymer(Korea), 23, 25 (1999).
  16. H. W. Xiao, P. Li, X. Ren, T. Jiang, and J. T. Yeh, J. Appl. Polym. Sci., 118, 3558 (2010). https://doi.org/10.1002/app.32728
  17. A. M. Harris and E. C. Lee, J. Appl. Polym. Sci., 107, 2246 (2008). https://doi.org/10.1002/app.27261
  18. A. Du, D. Koo, M. Ziegler, and R. A. Cairncross, Polym. Phys., 49, 873 (2011). https://doi.org/10.1002/polb.22258