Organic Acid and Enzyme Pretreatment of Laminaria japonica for Bio-ethanol Production

유기산 및 효소적 전처리를 이용한 다시마에서 바이오 에탄올 생산

  • Lee, Sung-Mok (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University) ;
  • Lee, Jae-Hwa (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University)
  • 이성목 (신라대학교 의생명과학대 생명공학과) ;
  • 이재화 (신라대학교 의생명과학대 생명공학과)
  • Published : 2012.04.10

Abstract

We investigated for the production of biological bio-ethanol from Laminaria japonica using the hydrolysis reaction of enzymes and organic acids and the polysaccharide content was also analyzed. The composition of the polysaccharide was characterized as 65.99% alginate, 6.24% laminaran and 27.77% mannitol. The optimum concentration for reducing the sugar conversion by Laminaria japonica was found to be 1.874 g/L at an acetic acid concentration of 1.5%, $121^{\circ}C$ for 60 min, and for an ascorbic acid of 2.0%, 4.291 g/L was produced in the same condition. The enzyme hydrolysis such as alginate lyase and laminarinase contained the maximum 2.219 g/L reducing sugar. In the result of ethanol fermentation using hydrolysate of Laminaria japonica, the organic acid treatment showed a high of reducing sugar yield, but decreased the ethanol yield, and then the maximum ethanol production obtained was 1.26 g/L using the mixed treated of enzyme.

References

  1. J.-I. Park, H.-C. Woo, and J.-H. Lee, Korean Chem. Eng. Res., 46, 833 (2008).
  2. S.-M. Lee, J.-H. Kim, H.-Y. Cho, H. Joo, and J.-H. Lee, J. Korean Ind. Eng. Chem., 20, 517 (2009).
  3. M. Balat and H. Balat, Applied Energy., 86, 2273 (2009). https://doi.org/10.1016/j.apenergy.2009.03.015
  4. N. E. Tolbert, Regulation of atmospheric $CO_2$ and $O_2$ by photosynthetic Carbon Metabolism, ed. J. Preiss, 8, Oxford University Press, Oxford (1994).
  5. J.-R. Do, Y.-J. Nam, J.-H. Park, and J.-H. Jo, J. Kor. Fish. Soc., 30, 428 (1997).
  6. A. Hirano, R. Ueda, S. Hirayama, and Y. Ogushi, Energy, 22, 137 (1997). https://doi.org/10.1016/S0360-5442(96)00123-5
  7. B. C. Saha and M. A. Cotta, Enzyme Microb. Technol., 41, 528 (2007). https://doi.org/10.1016/j.enzmictec.2007.04.006
  8. B. Hahn-Hagerdal, M. Galbe, M. F. Gorwa-Grauslund, G. Liden, and G. Zacchi, Trends Biotechnol., 24, 549 (2006). https://doi.org/10.1016/j.tibtech.2006.10.004
  9. Renewable Global Status Report. Renewable energy network for the 21st century (REN21). Washington, DC: Worldwatch Institute Paris, REN21 Secretariat (2009).
  10. J.-H. Kim, D.-S. Byun, J. S. Godber, J.-S. Choi, W.-C. Choi, and H.-R. Kim, Appl Microbiol. Biotechnol., 63, 553 (2004). https://doi.org/10.1007/s00253-003-1463-8
  11. H.-I. Kang, M.-S. Ko, H.-J. Kim, S.-W. Kim, and T.-J. Bae, J. Kor. Fish. Soc., 29, 716 (1996).
  12. S. A. Lee, J. U. Kim, J. G. Jung, I. H. Kim, S. H. Lee, S. J. Kim, and J. H. Lee, Kor. J. Biotechnol. Bioeng., 21, 389 (2006).
  13. Y.-H. Park, Bull. Korean Fish. Soc., 2, 71 (1969).
  14. S.-M. Lee and J.-H. Lee, Appl. Chem. Eng., 21, 154 (2010).
  15. D. B. Choi, H. S. Sim, Y. L. Piao, W. Ying, and H. Cho, J. Ind. Eng. Chem., 15, 12 (2009). https://doi.org/10.1016/j.jiec.2008.08.004