Compositions for Photosensitive Polymer Resistor Paste Using Epoxy Acrylates

에폭시 아크릴레이트를 이용한 감광성 폴리머 저항 페이스트 조성

  • Kim, Dong Kook (Department of Chemistry & Applied Chemistry, Hanyang University) ;
  • Park, Seong-Dae (Department of Chemistry & Applied Chemistry, Hanyang University) ;
  • Lee, Kyu-Bok (Korea Electronics Technology Institute) ;
  • Kyoung, Jin-Bum (Department of Chemistry & Applied Chemistry, Hanyang University)
  • Published : 2012.04.10

Abstract

Using six kinds of epoxy acrylates and a conductive carbon black, photosensitive resistor pastes were fabricated and then their developability in alkaline aqueous solution and the resistance values after thermal curing were evaluated. In order to impart the photocurability by UV exposure and the developability on alkaline solution, epoxy acrylate oligomers with carboxyl group, acrylate monomers, a photoinitiator and so forth were used. In addition, an organic peroxide was added into the paste to get a thermally curable composition. As a result, some of the pastes were not developed depending on the kinds of oligomers and, in the developed pastes, the measured resistance showed the different values depending on their compositions, even though they contain the same amount of carbon black. Finally, the optimum oligomer was selected and then, by adjusting the amount of carbon black, the kind of monomer and the curing temperature, the photosensitive resistor paste composition which showed the sheet resistance of about 0.5 $k{\Omega}/sq.$ could be obtained.

References

  1. S. K. Bhattacharya and R. R. Tummala, J. Mater. Sci., Mater. Electron., 11, 253 (2000). https://doi.org/10.1023/A:1008913403211
  2. W. Jillek and W. K. C. Yung, Int. J. Adv. Manuf. Technol., 25, 350 (2005). https://doi.org/10.1007/s00170-003-1872-y
  3. S. Norlyng, Adv. Microelectron., May/June 2003, 9 (2003).
  4. J. P. Doughherty, J. Galvagni, L. Marcanti, R. Sheffield, P. Sandborn, and R. Ulrich, Proc. of the Capacitor and Resistor Technology Symposium (CARTS), Scottsdale, AZ, April (2003).
  5. Y. Fukuoka, The Latest Trend of Embedded Passive and Active Devices Technology, ed. Y. Fukuoka, CMC Publishing Co. LTD., Tokyo (2007).
  6. Nikkei Business Publications, Nikkei Electronics Asia, Tokyo, Japan, May 2003, 30 (2003).
  7. M. G. Varadarajan, K. J. Lee, S. K. Bhattacharya, A. Bhattacharjee, L. Wan, R. Pucha, R. R. Tummala, and S. Sitaraman, Proc. IEEE Conf. High Density Microsystem Design and Packaging and Component Failure Analysis (HDP '06), 188 (2006).
  8. H. Park, J. IEEK, SD, 45, 72 (2008).
  9. U. S. Patent 6,229,098; 6,256,866 (2001).
  10. IPC-2316 Design Guide for Embedded Passive Device Printed Boards, March 2007.
  11. U. S. Patent 5,994,997 (1999)
  12. U. S. Patent 6,130,601 (2000).
  13. U. S. Patent 6,030,553 (2000).
  14. A. Dziedzic, L. Rebenklau, L. J. Golonka, and K. J. Wolter, Microelectron. Reliab., 43, 377 (2003). https://doi.org/10.1016/S0026-2714(02)00346-3
  15. U. S. Patent 6,225,035 (2001).
  16. D. K. Kim, S. D. Park, K. B. Lee, and J. B. Kyoung, Appl. Chem. Eng., 21, 411 (2010).
  17. S. Inagaki, Journal of the Society of Rubber Industry of Japan, 79, 406 (2006). https://doi.org/10.2324/gomu.79.406
  18. S. D. Park, N. M. Kang, J. K. Lim, D. K. Kim, N. K. Kang, and J. C. Park, J. Kor. Ceram. Soc., 41, 313 (2004). https://doi.org/10.4191/KCERS.2004.41.4.313
  19. H. Mataki and M. Hanabata, Photosensitive resin of a new time - Application of photoreactive resin, ed. K. Akamatsu, CMC Publishing Co. LTD., Tokyo, 201 (2003).