A Study on Photocatalytic Decomposition of Methylene Blue by Crystal Structures of Anatase/Rutile $TiO_2$

아나타제/루틸 $TiO_2$ 결정 구조에 의한 메틸렌 블루 광분해 특성 연구

  • 황문진 (울산대학교 에너지 하베스트-스토리지 연구센터) ;
  • 응웬탄빈 (울산대학교 화학과) ;
  • 류광선 (울산대학교 화학과)
  • Published : 2012.04.10

Abstract

Anatase and anatase/rutile $TiO_2$ samples were prepared at $HNO_3$/TTIP molar ratio of 0.1, 0.5, 1.0, and 1.5 to study the effects of the physical properties of $TiO_2$ on photocatalytic decomposition of methylene blue. The physical properties of the samples were measured with XRD, SEM, TEM, BET, FT-IR, and UV-vis spectroscopy. Anatase phase was observed at $HNO_3$/TTIP of 0.1 and anatase/rutile phases were observed at $HNO_3$/TTIP of 0.5~1.5. Rutile crystal phase, mesopore size between $TiO_2$ nanoparticles, and surface OH group on $TiO_2$ sample were gradually increased with increasing the molar ratio of $HNO_3$/TTIP and the residual methylene blue concentration before UV irradiation decreased from 78.0 to 53.3%. After UV irradiation, the residual methylene blue concentrations of the samples prepared at $HNO_3$/TTIP of 0.1, 0.5, 1.0, and 1.5 were 20, 14, 11, and 23%, respectively, and the sample prepared at $HNO_3$/TTIP of 1.0 showed the best photocatalytic ability.

References

  1. K. E. Karakitsou and X. E. Verykios, J. Phys. Chem., 97, 1184 (1993). https://doi.org/10.1021/j100108a014
  2. Z. Wang, D. Xia, G. Chen, T. Yang, and Y. Chen, Mater. Chem. Phys., 111, 313 (2008). https://doi.org/10.1016/j.matchemphys.2008.04.015
  3. M. Kanna and S. Wongnawa, Mater. Chem. Phys., 110, 166 (2008). https://doi.org/10.1016/j.matchemphys.2008.01.037
  4. J. H. Kim, B. H. Noh, G. D. Lee, and S. S. Hong, Korean J. Chem. Eng., 22, 370 (2005). https://doi.org/10.1007/BF02719413
  5. J. Wang, X. Han, W. Zhang, Z. He, C. Wang, R. Cai, and Z. Liu, Crst. Eng. Comm., 11, 561 (2009).
  6. S. M. Kim, T. K. Yun, and D. I. Hong, J. Kor. Chem. Soc., 49, 567 (2005). https://doi.org/10.5012/jkcs.2005.49.6.567
  7. A. L. Patterson, Phys. Rev., 56, 978 (1939). https://doi.org/10.1103/PhysRev.56.978
  8. E. P. Barrett, L. G. Joyner, and P. P. Halenda, J. Am. Chem. Soc., 73, 373 (1951). https://doi.org/10.1021/ja01145a126
  9. P. Davit, G. Martra, and S. Coluccia, J. Jpn. Petrol. Inst., 47, 359 (2004). https://doi.org/10.1627/jpi.47.359
  10. C. B. Almquist and P. Biswas, J. Catal., 212, 145 (2002). https://doi.org/10.1006/jcat.2002.3783
  11. P. M. Kumar, S. Badrinarayanan, and M. Sastry, Thin Solid Films, 358, 122 (2000). https://doi.org/10.1016/S0040-6090(99)00722-1
  12. F. Gracia, J. P. Holgado, and A. R. Gonzalez-Elipe, Langmuir, 20, 1688 (2004). https://doi.org/10.1021/la034998y
  13. X. M. He, Q. L. Xie, J. Liu, W. G. Lan, and H. P. Xia, Separ. Purif. Tech., 68, 153 (2009). https://doi.org/10.1016/j.seppur.2009.04.020