Antioxidative Activity and Componential Analysis of Chamaecyparis obtusa Leaf Extract

편백나무 잎 추출물의 항산화 활성과 성분분석에 관한 연구

  • Lee, Dong Sook (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Science and Technology) ;
  • Lim, Myoung Sun (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Science and Technology) ;
  • Kwan, Soon Sik (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Science and Technology) ;
  • Kim, Sun Young (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Science and Technology) ;
  • Park, Soo Nam (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Science and Technology)
  • 이동숙 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 임명선 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 권순식 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 김선영 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 박수남 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소)
  • Published : 2012.02.10

Abstract

In this study, the evaluation of antioxidative activity and componential analysis of C. obtusa leaf extracts was carried out. Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) of C. obtusa leaf extracts on ROS generated in $Fe^{3+}-EDTA/H_2O_2$ system were investigated using the luminol-dependent chemiluminescence assay. The ethyl acetate fraction ($OSC_{50}$; 0.22 ${\mu}g/mL$) and aglycone fraction of C. obtusa leaf extracts (0.20 ${\mu}g/mL$) showed about 7 times more prominent ROS scavenging activity than L-ascorbic acid (1.50 ${\mu}g/mL$). The cellular protective effects of fractions obtained from C. obtusa leaf extracts on the rose-bengal sensitized photohemolysis of human erythrocytes were investigated. The ethyl acetate fraction and aglycone fraction of C. obtusa leaf extracts showed the cellular protective effects in a concentration dependent manner (5~25 ${\mu}g/mL$). The inhibitory effect ($IC_{50}$) of ethyl acetate fraction and aglycone fraction on tyrosinase exhibited 74.43 and 53.80 ${\mu}g/mL$, repectively. The aglycone fraction showed four times higher tyrosinase inhibitory effect than arbutin (226.88 ${\mu}g/mL$), known as a whitening agent. The aglycone fraction of C. obtusa leaf extracts showed three bands in TLC chromatogram and three peaks in HPLC chromatogram (360 nm). Three compounds were identified as taxifolin, quercetin and kaempferol. These results indicate that the fractions of C. obtusa leaf extracts can function as antioxidants in biological systems, particularly skin exposed to UV radiation by scavenging $^1O_2$ and other ROS, and protect cellular membranes against reactive oxygen species. The fractions of C. obtusa leaf extracts can be applicable to new functional cosmetics for antioxidan and whitening effects.

Keywords

Chamaecyparis obtusa leaf extracts;antioxidative activity;flavonoids;taxifolin;quercetin

References

  1. D. Harman, Mutat. Res., 275, 257 (1992). https://doi.org/10.1016/0921-8734(92)90030-S
  2. B. A. Jurkiewicz and G. R. Buettner, Photochem Photobiol., 59, 1 (1994). https://doi.org/10.1111/j.1751-1097.1994.tb04993.x
  3. L. Packer, Free Radical Damage and its Control, ed. C. A. Rice- Evans, R. H. Burdon, 28, 239, Elsevier Science, Amsterdam (1994).
  4. B. A. Jurkiewicz, D. L. Bissett, and G. R. Buetter, J. Invest. Dermatol., 104, 484 (1995). https://doi.org/10.1111/1523-1747.ep12605921
  5. E. Cadenas, Ann. Rev. Biochem., 58, 79 (1989). https://doi.org/10.1146/annurev.bi.58.070189.000455
  6. A. Naqui, B. Chance, and E. Cadenas, Ann. Rev. Biochem., 55, 137 (1986). https://doi.org/10.1146/annurev.bi.55.070186.001033
  7. J. C. Fantone and P. A. Ward, Ann. J. Path., 107, 395 (1982).
  8. J. H. Jang, C. Lee, S. C. Kim, J. W. Chung, and C. I. Park, J. Soc. Cosmet. Scientists Korea, 36, 79 (2010).
  9. S. E. Lee, E. M. Ju, and J. H. Kim, Environ. Toxicol., 15, 147 (2000).
  10. W. Ma, M. Wlaschek, P. Brenneisen, L. A. Schneider, C. Hommel, C. Hellweg, H. Sauer, M. Wartenberg, G. Herrmann, C. Meewes, P. Boukamp, and K. Scharffetter-Kochanek, Experimental Cell Research, 274, 299 (2002). https://doi.org/10.1006/excr.2002.5476
  11. S. N. Park, J. Soc. Cosmet. Sci. Kor., 23, 75 (1997).
  12. R. G. Allen and M. Tresini, Free Radical Biology and Medicine, 28, 463 (2000). https://doi.org/10.1016/S0891-5849(99)00242-7
  13. B. A. Jurkiewicz, D. L. Bissett, and G. R. Buetter, J. Invest. Dermatol., 104, 484 (1995). https://doi.org/10.1111/1523-1747.ep12605921
  14. K. H. Jang and S. S. Roh, The Journal of Daejeon Oriental Medicine, 13, 289 (2004).
  15. I. K. Lee, B. S. Yun, J. P. Kim, S. H. Chung, G. S. Shim, and I. D. Yoo, Kor. J. Pharmacogn, 29, 163 (1998).
  16. M. J. Park, W. S. Choi, H. Y. Kang, K. S. Gwak, G. S. Lee, E. B. Jeung, and I. G. Choi, J. Microbiology, 48, 496 (2010). https://doi.org/10.1007/s12275-010-9327-2
  17. J. H. Lee, B. K. Lee, J. H. Kim, S. H. Lee, and S. K. Hong, J. Microbiol. Biotechnol, 19, 391 (2009). https://doi.org/10.4014/jmb.0803.191
  18. S. Koyama, Y. Yamaguchi, S. Tanaka, and J. Motoyoshiya, Gen Pharmacol., 28, 797 (1997). https://doi.org/10.1016/S0306-3623(96)00370-9
  19. J. K. Yang, M. S. Choi, W. T. Seo, D. Lee R. Sang, W. Han, and G. W. Cheong, Fitoterapia, 78, 149 (2007). https://doi.org/10.1016/j.fitote.2006.09.026
  20. H. S. Kim, S. K. Han, and J. Y. Mang, Korean Journal of Odor Research and Engineering, 8, 111 (2009).
  21. M. J. Kim and K. R. Im, J. Soc. Cosmet. Sci. Korea, 35, 143 (2009).