Electrochemical Generation of Chlorine Dioxide Using Polymer Ion Exchange Resin

고분자 이온교환수지를 이용한 의료.식품용 멸균제 이산화염소의 전기화학분해 발생

  • Rho, Seung Baik (Department of Chemical Engineering, Keimyung University) ;
  • Kim, Sang Seob (Department of Chemical Engineering, Keimyung University)
  • 노승백 (계명대학교 화학공학과) ;
  • 김상섭 (계명대학교 화학공학과)
  • Published : 2012.02.10


A characteristic study of chlorine dioxide generation by the electrolysis system was performed after chlorite ($ClO_2^-$) is adsorbed from sodium chlorite by a polymer ion exchange resin. A strongly basic anion exchange resin was used and a Ti plate coated with Ru and Ir was used as an electrode. Various parameters such as reaction stirring velocity, reaction temperature, chlorine dioxide product concentration, ion exchange resin content and product maker type for the adsorption quantity in the chlorite adsorption of ion exchange resin were investigated and found the ion exchange resin with the maximum adsorption quantity. A generation trend of chlorine dioxide was observed by the electrolysis system and optimum conditions on the desired value were found using response surface design of DOE (Design of Experiments). The strongly basic anion exchange resin with the maximum adsorption quantity was SAR-20 (TRILITE Gel type II) and the adsorption quantity was around 110 mg/IER (g). Observed generation optimum conditions of chlorine dioxide were constant-current (electrode area base; $A/dm^2$) and flow rate of $N_2$ gas (4.7 L/min) at the desired value of sterilization (900~1000 ppm, 1 h).


chlorine dioxide;electrolysis system;ion exchange resin (IER);sodium chlorite;response surface design


  1. B. R. Deshwal and H. K. Lee, J. Ind. Eng. Chem., 11, 125 (2005).
  2. S. H. Lee, H. Y. Shin, K. J. Ku, Y. Y. Jin, S. J. Jeon, H. S. Chae, and K. B. Song, Korean J. Food Sci. Technol., 39, 222 (2007).
  3. H. S. Shin and Y. S. Oh, Analytical Science & Technology, 12, 403 (1999).
  4. C. S. Kong, Ph. D. Dissertation, Chonbuk National University, Jeonju, Korea (2005).
  5. M. Furuhashi, T. Miyamae, and I. Ueda, Medical Appliance, 52, 14 (1982).
  6. H. Bergmann and S. Koparal, Electrochim. Acta., 50, 5218 (2005). https://doi.org/10.1016/j.electacta.2005.01.061
  7. Y. J. Lee, H. T. Kim, and U. G. Lee, Korean J. Chem. Eng., 21, 647 (2004). https://doi.org/10.1007/BF02705500
  8. C. J. Volk, R. Hofman, C. Chauret, G. A. Gagnon, G. Ranger, and R. C. Andrews, J. Environ. Eng. Sci., 1, 323 (2002). https://doi.org/10.1139/s02-026
  9. S. W. Jeong, H. J. Oh, H. S. Park, J. W. Kang, and S. I. Choi, J. of KSSE., 17, 543 (1995).
  10. T. O. Kwon, B. B. Park, H. C. Roh, and I. S. Moon, J. Korean Ind. Eng. Chem., 20, 296 (2009).
  11. T. O. Kwon, B. B. Park, H. C. Roh, and I. S. Moon, Korean Chem. Eng. Res., 48, 275 (2010).
  12. W. K. Son, H. S. Kim, and S. G. Park, J. KIEEME., 12, 40 (1999).
  13. K. R. Kim, S. H. Lee, S. W. Park, H. S. Kang, and H. S. Chung, Applied Chemistry, 2, 313 (1998).
  14. S. B. Lee, Design of Experiments, 1, 195 (2008).