Effects of the Addition of Metallic Salts and Polyhydric Alcohols on the Formation of Zinc Complex-compound Particle

아연 착화합물 입자형성에 미치는 금속염 및 다가알코올 첨가의 영향

  • In, Se-Jin (Department of Fire and Disaster Protection Engineering, Woosong University)
  • 인세진 (우송대학교 소방방재학과)
  • Published : 2012.02.10

Abstract

The experiments have been performed to obtain zinc complex compound with smaller particle size, which is used as a charge control agent in manufacturing toner. Metallic salts and polyhydric alcohols have been studied to investigate their effects on the formation of different sizes of zinc complex-compound particle. Reactants such as zinc chloride and 3,5-di-tert-butyl salicylic acid have been used to form the complex compound. Polyethylene glycol (PEG-300), glycerin and ethylene glycol have been added into the zinc chloride solution beforehand to lower the reaction rate in the formation of zinc complex-compound. Zirconium (IV) oxychloride octahydrate has been mixed in the zinc chloride solution beforehand to restrain crystals from growing. When PEG-300 and zirconium (IV) oxychloride octahydrate are used to lower the reaction rate and to restrain the particle size from growing, the average particle size of zinc complex compound decreases from 5.28 to 1.84 ${\mu}m$, which is 34.9% of 5.28 ${\mu}m$.

Keywords

charge control agent;zinc complex compound;metallic salts;polyhydric alcohols

References

  1. M. Takeuchi and T. Oguchi, Advanced Technology and Application of Toner, MGM Publishing Co. Ltd., 1, 14, Toykyo (2009).
  2. J. W. Jeon and S. S. Kim, J. Korean Soc. Dyers & Finishers, 15, 8 (2003).
  3. J. S. Chang, A. J. Kelly, and J. M. Cowley, Handbook of Electrostatic Processes, ed. M. Dekker, Inc. (1995).
  4. M. S. Park, Polymer (Korea), 30, 505 (2006).
  5. J. H. Lee, S. N. Lee, and M. S. Park, J. Korean Printing Society, 20, 65 (2002).
  6. N. Iwata, K. Tani, and A. Watada, Micron, 37, 290 (2006). https://doi.org/10.1016/j.micron.2005.08.003
  7. L. De Schamphelaere, Short Run Digital Color Printing, IS+T llth Intemational Congress, Hilton Head/US (1995).
  8. J. Yang, T. J. Wang, and H. He, Ind. Eng. Chem. Res., 42, 5568 (2003). https://doi.org/10.1021/ie0301029
  9. N. Sawatari, M. Fukuda, Y. Taguchi, and M. Tanaka, J. Appl. Poly. Sci., 97, 682 (2005). https://doi.org/10.1002/app.21823
  10. M. P. Stevens, Polymer Chemistry : 3rd edition, Oxford University Press, Oxford (1999).
  11. S. R. Choi, Y. I. Kim, and W. K. Seok, Reaction and Mechanism of Transition Metal Compounds, 141, Freedom academy, Seoul (2003).
  12. R. Bai, L. Zhang, Y. Liu, L. Meng, L. Wang, Y. Wu, W. Li, C. Ge, and L. L. Guyader, C. Chen, Toxicol. Lett., 199, 288 (2010). https://doi.org/10.1016/j.toxlet.2010.09.011
  13. G. S. P. Castle and L. B. Schein, J. Electrost., 36, 165 (1995). https://doi.org/10.1016/0304-3886(95)00043-7
  14. J. H. Anderson, D. E. Bugner, L. P. DeMejo, R. A. Guistina, and N. Zumbulyadis, J. Imaging Sci. Technol., 37, 431 (1993).
  15. J. H. Anderson, J. Imaging Sci. Technol., 38, 378 (1994).
  16. E. J. Gutman and G. C. Hartmann, J. Imaging Sci. Technol., 36, 335 (1992).
  17. A. F. Diaz and D. Fenzel-Alexander, Langmuir, 9, 249 (1993). https://doi.org/10.1021/la00025a047