Study on Anti-biofouling Properties of the Surfaces Treated with Perfluoropolyether (PFPE)

Perfluoropolyether (PFPE)로 처리된 표면의 생물오손 방지 특성 연구

  • Park, Sooin (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kwon, Sunil (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lee, Yeongmin (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Koh, Won-Gun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Ha, Jong Wook (Korea Research Institute of Chemical Technology) ;
  • Lee, Sang-Yup (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 박수인 (연세대학교 화공생명공학과) ;
  • 권순일 (연세대학교 화공생명공학과) ;
  • 이영민 (연세대학교 화공생명공학과) ;
  • 고원건 (연세대학교 화공생명공학과) ;
  • 하종욱 (한국화학연구원) ;
  • 이상엽 (연세대학교 화공생명공학과)
  • Published : 2012.02.10


Biofouling by marine organisms such as algae and barnacles causes lots of significant problems in marine systems such as a rise of the maintenance-repair cost for the ship and the marine structures. In this work, a fluoropolymer, perfluoropolyether (PFPE), was applied as an anti-biofouling coating material that prevents the adhesion of marine organisms and facilitates the removal of them. Water contact angles of various surfaces were tested to examine the hydrophobicity of the PFPE-modified surface. The PFPE-modified surface showed the water contact angle of $64.5^{\circ}$ which is a remarkable rise from $46.7^{\circ}$ of amine-treated surface. When the substrate was treated with PFPE, the adhesion on the of the barnacle and other marine organisms were repressed around 15% by the enhanced hydrophobicity. In addition, the removal the of the adhered marine organisms were better comparing to that of the surface prepared by PDMS. Surfaces of the substrate treated by PFPE were characterized through physical and chemical methods to analyze the biofouling results. Degree of biomolecular adhesion to the substrate was quantified by the measurement the fluorescence intensity of marine organisms dyed with green fluorescence. PFPE is expected to be applicable not only to anti-biofouling systems but also to medical devices where the prevention of protein adhesion is required.




  1. R. L. Townsin, Biofouling, 19, 9 (2003).
  2. M. E. Callow and J. A. Callow, Biologist, 49, 1 (2002)
  3. P. J. Molino and R. Wetherbee, Biofouling, 24, 365 (2008).
  4. J. Strand and J. A. Jacobsen, Sci. Total Environ., 350, 72 (2005).
  5. D. M. Yebra, S. Kiil, and K. Dam-Johansen, Prog. Organ. Coatings, 50, 75 (2004).
  6. N. Aldred and A. S. Clare, Biofouling, 24, 351 (2008).
  7. T. S. Tsapikouni and Y.F. Missirlis, Mater. Sci. Eng. B, 152, 2 (2008).
  8. A. Takahara, Y. Hara, K. Kojio, and T. Kajiyama, Coll. Surf. B, 23, 141 (2002).
  9. T. Osaki, L. Renner, M. Herklotz, and C. Werner, J. Phys. Chem. B, 110, 12119 (2006).
  10. Y. Tang, J. A. Finlay, G. L. Kowalke, A. E. Meyer, F. V. Bright, M. E. Callow, J. A. Callow, D. E. Wendt, and M. R. Detty, Biofouling, 21, 59 (2005).
  11. A. J. Scardino, H. Zhang, D. J. Cookson, R. N. Lamb, and R. de Nys, Biofouling, 25, 757 (2009).
  12. S.-J. Choi, K. Y. Suh, and H. H. Lee, J. Am. Chem. Soc., 130, 6312 (2008).
  13. M. J. Owen, Physical Properties of Polymers Handbook, ed. J. E. Mark, 669, AIP Press, New York (1996).
  14. J. A. Howard, V. J. Hoy, D. O'Hagan, and G. T. Smith, Tetrahedron, 52, 12613 (1996).
  15. J.-W. Ha, I. J. Park, and S.-B. Lee, Macromolecules, 38, 736 (2005).
  16. M. Yu, G. Gu, W.-D. Meng, and F.-L. Qing, Appl. Surf. Sci., 253, 3669 (2007).
  17. J. Choi, M. Gawaguchi, T. Kato, and M. Ikeyama, J. Appl. Phys., 99, 08N109/1 (2006).
  18. E. Liu, K. S. Tan, and H. I Tan, J. Nanosci. Nanotech., 8, 2719 (2008).
  19. J. P. Rolland, E. C. Hagberg, G. M. Denison, K. R. Carter, and J. M. Desimone, Angew. Chem. Int. Ed., 43, 5796 (2004).
  20. P. Fabbri, M. Messsori, M. Montecchi, F. Pilati, R. Taurino, C. Tonelli, and M. Toselli, J. Appl. Polym. Sci., 102, 1483 (2006).
  21. S. Kwon, J.-W. Ha, J. Noh, and S.-Y. Lee, Appl. Surf. Sci., 257, 165 (2010).
  22. S. Kwon, H. Kim, J.-W. Ha, and S.-Y. Lee, J. Ind. Eng. Chem., 17, 259 (2011).
  23. R. G. Chapman, E. Ostuni, S. Takayama, R. E. Holmlin, L. Yan, and G. M. Whitesides, J. Am. Chem. Soc., 122, 8303 (2000).
  24. N. Barbero, L. Napione, P. Quagliotto, S. Pavan, C. Barolo, E. Barni, F. Bussolino, and G. Viscardi, Dyes Pigments, 83, 225 (2009).
  25. D. L. Schimidt, R. F. Brady Jr., K. Lam, D. C. Schmidt, and M. K. Chaudhury, Langmuir, 20, 2830 (2004).
  26. S. Feng, Q. Wang, Y. Gao, Y. Huang, and F.-L. Qing, J. Appl. Polym. Sci., 114, 2071 (2009).
  27. S. Krishnan, R. Ayothi, A. Hexemer, J. A. Finlay, K. E. Sohn, R. Perry, C. K. Ober, E. J. Kramer, M. E. Callow, J. A. Callow, and D. A. Fischer, Langmuir, 22, 5075 (2006).
  28. R. Holland, T. M Dugdale, R. Wetherbee, A. B. Brennan, J. A. Finlay, J. A. Callow, and M. E. Callow, Biofouling, 20, 323 (2004).
  29. Z. Hu, J. A. Finlay, L. Chen, D. E. Betts, M. A. Hillmyer, M. E. Callow, J. A. Callow, and J. M. DeSimone, Macromol., 42, 6999 (2009).
  30. J. C. Yarbrough, J. P. Rolland, J. M. DeSimone, M. E. Callow, J. A. Finlay, and J. A. Callow, Macromolecules, 39, 2521 (2006).
  31. N. Kumar, O. Parajulo, A. Gupta, and J. Hahm, Langmuir, 24, 2688 (2008).