Preparation of Monodispersed Polystyrene Latex Spheres (PLS) as Artificial Dusts

인공 먼지로서 단분산 Polystyrene Latex Spheres (PLS)의 제조

  • Kim, Ok Hee (Center for Functional Nano Fine Chemicals and School of Applied Chemical Engineering, Chonnam National University) ;
  • Ryu, Dong Wan (The Research Institute for Catalysis, Chonnam National University) ;
  • Sung, Dong Chan (Dong Yang Chemical Co. Ltd.) ;
  • Moon, Hee (The Research Institute for Catalysis, Chonnam National University)
  • 김옥희 (전남대학교 공과대학 신화학소재공학과) ;
  • 류동완 (전남대학교 촉매연구소) ;
  • 성동찬 ((주)동양화학) ;
  • 문희 (전남대학교 촉매연구소)
  • Published : 2012.02.10

Abstract

Polystyrene latex spheres (PLS) were prepared as artificial dusts by the emulsion polymerization with potassium persulfate (KPS) and sodium dodecyl sulfonate (SDS) as an initiator and a stabilizer, respectively. The reaction temperature and the concentration of the initiator and stabilizer were chosen as variables to control the PLS particle size. As temperature increased, the particle size decreased considerably. Furthermore, the PLS particle size and their size distributions can be controlled minutely by adjusting the concentrations of KPS and SDS. It is confirmed that the PLS prepared in this work is monodispersed with the coefficient of variance less than 7% and are in the range of 0.1~0.5 ${\mu}m$, which are good for using as artificial dusts.

Keywords

polystyrene latex spheres;artificial dusts;emulsion polymerization;monodispersed

References

  1. C. H. Hung and W. W. F. Leung, Sep. Purif. Technol., 79, 33 (2011).
  2. A. Joubert and J. C. Laborde, Chem. Eng. J., 166, 616 (2011). https://doi.org/10.1016/j.cej.2010.11.033
  3. Liuliu Du and S. Batterman, Build. Environ., 46, 2303 (2011). https://doi.org/10.1016/j.buildenv.2011.05.012
  4. G. Geschwind and D. Stanley, J. Aerosol. Sci., 27, 5635 (1996).
  5. R. Weper, Filtr. Sep., 31, 781 (1994). https://doi.org/10.1016/0015-1882(94)80522-9
  6. K. P. Lok and C. K. Ober, Can. J. Chem., 63, 209 (1985). https://doi.org/10.1139/v85-033
  7. Y. Yin and Y. Xia, Adv. Mater., 13, 267 (2001). https://doi.org/10.1002/1521-4095(200102)13:4<267::AID-ADMA267>3.0.CO;2-9
  8. F. Caruso, Adv. Mater., 13, 11 (2001). https://doi.org/10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N
  9. X. C. Xiao, T. Y. Chu, W. M. Chen, S. Wang, and R. Xie, Langmuir, 20, 5247 (2004). https://doi.org/10.1021/la036230j
  10. H. Kawaguchi, Prog. Polym. Sci., 25, 1171 (2000). https://doi.org/10.1016/S0079-6700(00)00024-1
  11. O. W. Webster, Science, 251, 887 (1991). https://doi.org/10.1126/science.251.4996.887
  12. E. B. Mock, H. D. Bruyn, B. S. Hawkett, R. G. Gilbert, and C. F. Zukoski, Langmuir, 22, 4037 (2006). https://doi.org/10.1021/la060003a
  13. U. Akiva and S. Margel, J. Colloid Interface. Sci., 288, 61 (2005). https://doi.org/10.1016/j.jcis.2005.02.077
  14. A. Perro, S. Reculusa, S. Ravaine, E. Bourgeat-Lami, and E. Duguet, J. Mater. Chem., 15, 3745 (2005). https://doi.org/10.1039/b505099e
  15. G. Geschwind, S. D. Duke, and D. Milholland, J. Aerosol. Sci., 27, 635 (1996). https://doi.org/10.1016/0021-8502(96)86889-3
  16. J. V. Dawkins, Aqueous Suspension Polymerization in Comprehensive Polymer Science, S. S. Allen, and J. G. Bevington, Ed., Pergamon Press, Oxford (1989).
  17. C. S. Chen, Prog. Polym. Sci., 31, 443 (2003).
  18. J. Liu and C. H. Chew, Langmuir, 13, 4988 (1997). https://doi.org/10.1021/la970252m
  19. S. Shin and M. S. El-Aaser, J. Polym. Sci., 29, 857 (1992)
  20. J. Zhang, Z. Chen, Z. Wang, W. Zhang, and N. Ming, Mater. Lett., 57, 4466 (2003). https://doi.org/10.1016/S0167-577X(03)00344-6
  21. D. Qiu, T. Cosgrove, and A. M. Howe, Macromol. Chem. Phys., 206, 2233 (2005). https://doi.org/10.1002/macp.200500306
  22. DOE TECHNICAL STANDARD, Specification for HEPA Filters Used by DOE Contractors, DOE-STD-3020-2005.
  23. R. P. N. Veregin, P. G. Odell, L. M. Michalak, and M. K. Georges, Macromolecules, 29, 2746 (1996). https://doi.org/10.1021/ma951471m
  24. S. E. Shim, Y. Cha, J. Byun, and S. Shoe, J. Appl. Polym. Sci., 71, 2259 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990328)71:13<2259::AID-APP17>3.0.CO;2-5
  25. C. Barner-Kowollik and T. P. Davis, Macromol. Theory Simul., 10, 255 (2001). https://doi.org/10.1002/1521-3919(20010401)10:4<255::AID-MATS255>3.0.CO;2-V
  26. C. Chren and C. Lee, J. Polym. Sci., 40, 1608 (2002). https://doi.org/10.1002/pola.10243
  27. B. Jacobi, Angew, Chem., 64, 539 (1952). https://doi.org/10.1002/ange.19520641907
  28. W. J. Priest, J. Phys. Chem., 56, 1077 (1952). https://doi.org/10.1021/j150501a010
  29. W. D. Harkins, J. Am. Chem. Soc., 69, 1428 (1947). https://doi.org/10.1021/ja01198a053
  30. Li, Y and S. M. Ghoreishi, Langmuir, 16, 3093 (2000). https://doi.org/10.1021/la9910172
  31. T. G. Fox and J. Flory, J. Appl. Phys., 21, 581 (1950). https://doi.org/10.1063/1.1699711
  32. T. Tanrisever and O. Okay, J. Appl. Polym. Sci., 61, 485 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960718)61:3<485::AID-APP11>3.0.CO;2-0
  33. M. Weiha and N. Frank Jones, Polym. Bull., 40, 749 (1998). https://doi.org/10.1007/s002890050318
  34. G. Xie and Q, Zhang, J. Appl. Polym. Sci., 87, 1733 (2003). https://doi.org/10.1002/app.11483