Removal of Indoor Formaldehyde Using Mesoporous Carbon Activated with KOH

KOH 활성화처리된 메조기공 탄소를 이용한 실내 포름알데히드 제거

  • Yu, Mi Jin (School of Environmental Engineering, University of Seoul) ;
  • Park, Sung Hoon (Department of Environmental Engineering, Sunchon National University) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University) ;
  • Park, Young-Kwon (School of Environmental Engineering, University of Seoul)
  • 유미진 (서울시립대학교 환경공학부) ;
  • 박성훈 (순천대학교 환경공학과) ;
  • 전종기 (공주대학교 화학공학부) ;
  • 박영권 (서울시립대학교 환경공학부)
  • Published : 2012.02.10

Abstract

In this study, a mesoporous carbon (CMK-3) activated using KOH was applied to the adsorption of formaldehyde, a representative indoor air pollutant. Activation process was carried out by putting KOH-treated CMK-3 in a reactor maintained at $700^{\circ}C$ in $N_2$ atmosphere. The activated sample was characterized using BET, XRD, XPS and FT-IR analysis. The formaldehyde adsorption performance of the mesoporous carbon was improved, which is attributed to the formation of oxygen and nitrogen functional groups on the mesoporous carbon surface by the activation process.

Keywords

formaldehyde;CMK-3;KOH;adsorption

References

  1. D. I. Kim, J. H. Park, S. D. Kim, J. Y. Lee, J. H. Yim, J. K. Jeon, S. H. Park, and Y. K. Park, J. Ind. Eng. Chem., 17, 1 (2011). https://doi.org/10.1016/j.jiec.2010.12.010
  2. S. S. Kim, D. H. Kang, D. H. Choi, M. S. Yeo, and K. W. Kim, Building Environ., 43, 320 (2008). https://doi.org/10.1016/j.buildenv.2006.03.026
  3. S. K. Shin, J. H. Kang, and J. H. Song, J. Korean Soc. Environ. Eng., 32, 963 (2010).
  4. J. K. Lim, S. W. Lee, S. K. Kam, D. W. Lee, and M. G. Lee, J. Environ. Sci., 14, 61 (2005).
  5. H. U. Lee, J. S. Kim, C. Han, and H. K. Song, Hwahak Konghak, 37, 120 (1999).
  6. M. Kang, D. Kim, S. H. Yi, J. U. Han, J. E. Yie, and J. M. Kim, Catal. Today, 93-95, 695 (2004).
  7. R. Ryoo, S. H. Joo, and S. J. Jun, J. Phys, Chem. B, 103, 7743 (1999). https://doi.org/10.1021/jp991673a
  8. S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, and O. Terasaki, J. Am. Chem. Soc., 122, 10712 (2000). https://doi.org/10.1021/ja002261e
  9. M. Kang, S. H. Yi, H. I. Lee, J. E. Yie, and J. M. Kim, Chem. Commun., 1944 (2002).
  10. A. B. Fuertes and D. M. Nevskaia, Micropor. Mesopor. Mater., 62, 177 (2003). https://doi.org/10.1016/S1387-1811(03)00403-7
  11. R. Ryoo and S. A. Jun, J. Korean Ind. Eng. Chem., 12, 1 (2001).
  12. H. B. An, M. J. Yu, J. M. Kim, M. Jin, J. K. Jeon, S. H. Park, S. S. Kim, and Y. K. Park, Nanoscale Res. Lett., 7, 7 (2012). https://doi.org/10.1186/1556-276X-7-7
  13. J. H. Yim, D. I. Kim, J. A. Bae, Y. K. Park, J. H. Park, J. K. Jeon, S. H. Park, J. Song, and S. S. Kim, J. Nanosci. Nanotechnol., 11, 1714 (2011). https://doi.org/10.1166/jnn.2011.3336
  14. J. Y. Lee, S. H. Park, J. K. Jeon, K. S. Yoo, S. S. Kim, and Y. K. Park, Korean J. Chem. Eng., 28, 1556 (2001).
  15. H. Darmstadt, C. Roy, S. Kaliaguine, S. J. Choi, and R. Ryoo, Carbon., 40, 2673 (2002). https://doi.org/10.1016/S0008-6223(02)00187-2
  16. Y. Xia and R. Mokaya, Adv. Mater., 16, 1553 (2004). https://doi.org/10.1002/adma.200400391
  17. M. Kilic, M. E. Keskin, S. Mazlum, and N. Mazlum, Int. J. Miner. Process., 87, 1 (2008). https://doi.org/10.1016/j.minpro.2008.01.001
  18. M. S. Shafeeyan, W. M. A. W. Daud, A. Houshmand, and A. Shamiri, J. Anal. Appl. Pyrolysis, 89, 143 (2010). https://doi.org/10.1016/j.jaap.2010.07.006