The Effect of Oxygen in Low Temperature SCR over Mn/$TiO_2$ Catalyst

Mn/$TiO_2$ 촉매를 이용한 저온 SCR 반응에서 산소의 영향

  • Lee, Sang Moon (Department of Environmental Energy Systems Engineering, Graduate School of Kyonggi University) ;
  • Choi, Hyun Jin (Department of Green Process R&D, Green Chemistry & Manufacturing System Division, Korea Institute of Industrial Technology) ;
  • Hong, Sung Chang (Department of Environmental Energy Systems Engineering, Graduate School of Kyonggi University)
  • 이상문 (경기대학교 일반대학원 환경에너지시스템공학과) ;
  • 최현진 (한국생산기술연구원 청정생산시스템연구본부) ;
  • 홍성창 (경기대학교 일반대학원 환경에너지시스템공학과)
  • Published : 2012.02.10

Abstract

This study presents the effect of oxygen on the $NH_3$ selective catalytic reduction (SCR) by Mn/$TiO_2$ catalyst. The lattice oxygen of catalysts is participate in the low temperature SCR, and the gaseous oxygen directly takes part in the rexoidtion of reduced catalyst. These redox properties of oxygen an play important role in SCR activity and the available capability of lattice oxygen depends on the manganese oxidation state of the catalyst surface. $MnO_2$ species has a higher redox property than that of $Mn_2O_3$ species on deposited $TiO_2$ surface and these manganese oxide states strongly depend on the $TiO_2$ surface area.

Keywords

Mn/$TiO_2$;$NH_3$ SCR;lattice oxygen;redox

References

  1. H. Bosch and F. Jamssen, Catal. Today, 2, 369 (1988). https://doi.org/10.1016/0920-5861(88)80002-6
  2. V. I. Parvulescu, P. Grange, and B. Delmon, Catal. Today, 46, 236 (1998).
  3. P. Forzatti and L. Lietti, Heterogeneous Chem. Rev., 3, 33 (1996). https://doi.org/10.1002/(SICI)1234-985X(199603)3:1<33::AID-HCR54>3.0.CO;2-R
  4. J. L. Alemany, L. Lietti, N. Ferlazzo, P. Forzatti, G. Busca, G. Ramis, E. Giamello, and F. Bregani, J. Catal., 155, 117 (1995). https://doi.org/10.1006/jcat.1995.1193
  5. D. A. Pena, B. S. Uphade, and P. G. Smirniotis, J. Catal., 221, 421 (2004). https://doi.org/10.1016/j.jcat.2003.09.003
  6. S. Roy, B. Viswanath, M. S. Hegde, and G. Madras, J. Phys. Chem. C, 112, 6002 (2008). https://doi.org/10.1021/jp7117086
  7. C. Lahousse, A. Bernier, P. Grange, B. Delmon, P. Papaefthimiou, T. Ioannides, and X. Verykios, J. Catal., 178, 214 (1998). https://doi.org/10.1006/jcat.1998.2148
  8. R. Xu, X. Wang, D. Wang, K. Zhou, and Y. Li, J. Catal., 237, 426 (2006). https://doi.org/10.1016/j.jcat.2005.10.026
  9. X. Tang, Y. Li, X. Huang, Y. Xu, H. Zhu, J. Wang, and W. Shen, Appl. Catal. B; Environ., 62, 265 (2006).
  10. J. F. Li, N. Q. Yan, Z. Qu, S. H. Qiao, S. J. Yang, Y. F. Guo, P. Liu, and J. P. Jia, Environ. Sci. Technol., 44, 426 (2010). https://doi.org/10.1021/es9021206
  11. G. Qi, R. T. Yang, and R. Chang, Appl. Catal. B; Environ., 51, 93 (2004). https://doi.org/10.1016/j.apcatb.2004.01.023
  12. F. Kapteijn, A. D. V. Langeveld, J. A. Moulijn, and A. Andrein, J. Catal., 150, 94 (1994). https://doi.org/10.1006/jcat.1994.1325
  13. P. G. Smirniotis, P. M. Sreekanth, D. A. Pena, and R. G. Jenkins, Ind. Eng. Chem. Res., 45, 6436 (2006). https://doi.org/10.1021/ie060484t
  14. M. Koebel, M. Elsener, and G. Madia, Ind. Eng. Chem. Res., 40, 52 (2001). https://doi.org/10.1021/ie000551y
  15. Zhang-Steenwinkel, J. Beckers, and A. Bliek, Appl. Catal. A: Gen., 235, 79 (2002). https://doi.org/10.1016/S0926-860X(02)00241-7
  16. W. C. Wong, Dissertation, California University, California, USA (1982).