Measurement of an Isoelectric Point and Softness of a Zwitterionic Surfactant

양쪽성 계면활성제의 등전점 및 유연력 측정에 관한 연구

  • Lim, Jongchoo (Department of Chemical and Biochemical Engineering, Dongguk University-Seoul) ;
  • Kim, Jisung (Department of Chemical and Biochemical Engineering, Dongguk University-Seoul) ;
  • Mo, Dahee (Department of Chemical and Biochemical Engineering, Dongguk University-Seoul) ;
  • Lee, Jinsun (Department of Chemical and Biochemical Engineering, Dongguk University-Seoul)
  • 임종주 (동국대학교 공과대학 화공생물공학과) ;
  • 김지성 (동국대학교 공과대학 화공생물공학과) ;
  • 모다희 (동국대학교 공과대학 화공생물공학과) ;
  • 이진선 (동국대학교 공과대학 화공생물공학과)
  • Published : 2012.02.10

Abstract

In this study, physical properties of synthesized DE7-OSA82-AO and DEP52-OSA82-AOQ82 zwitterionic surfactants were measured such as critical micelle concentration, surface tension, interfacial tension, contact angle and viscosity. Phase behavior study was also performed. The dual function characteristics of a zwitterionic surfactant were investigated by determining an isoelectric point, which was attained using zeta potential measurements and QCM (quartz crystal microbalance) experiments. The isoelectric point of DE7-OSA82-AO surfactant determined by the zeta potential measurement and QCM experiment was about 7.2 and 7.4, respectively. On the other hand, the isoelectric point of DEP52-OSA82-AOQ82 surfactant determined by the zeta potential measurement and QCM experiment was about 10.9 and 11.0, respectively. The frictional property measured using an automated mildness tester showed that DE7-OSA82-AO surfactant can provide a good softening effect at an acidic or neutral condition. On the other hand, DEP52-OSA82-AOQ82 was found to provide a good softening effect to a fabric surface at a pH below its isoelectric point of 11.

Keywords

zwitterionic surfactant;softness;isoelectric point;QCM (quartz crystal microbalance);zeta potential

References

  1. W. G. Cutler and E. Kissa, Detergency : Theory and Technology, Surfactant Science Series, 20, 1, Marcel Dekker, New York (1987).
  2. A. M. Schwartz, The Physical Chemistry of Detergency ed. E. Matijevic, Surface Colloid Sci., 195, Wiley, New York (1972).
  3. C. A. Miller and P. Neogi, Interfacial Phenomena : Equilibrium and Dynamic Effects, Surfactant Science Serie, 17, 150, Marcel Dekker, New York (1985).
  4. J. C. Lim, J. Korean Ind. Eng. Chem., 6, 610 (1995).
  5. J. C. Lim, J. Korean Ind. Eng. Chem., 8, 473 (1997).
  6. S. K. Lee, J. W. Han, B. H. Kim, P. G. Shin S. K. Park, and J. C. Lim, J. Korean Ind. Eng. Chem., 10, 537 (1999).
  7. H. K. Ko, B. D. Park, and J. C. Lim, J. Korean Ind. Eng. Chem., 11, 679 (2000).
  8. J. G. Lee, S. S. Bae, I. S. Cho, S. J. Park, B. D. Park, S. K. Park, and J. C. Lim, J. Korean Ind. Eng. Chem., 16, 664 (2005).
  9. J. G. Lee, S. S. Bae, I. S. Cho, S. J. Park, B. D. Park, S. K. Park, and J. C. Lim, J. Korean Ind. Eng. Chem., 16, 677 (2005).
  10. J. C. Lim, J. Korean Ind. Eng. Chem., 16, 778 (2005).
  11. M. J. Bae and J. C. Lim, J. Korean Ind. Eng. Chem., 20, 15 (2009).
  12. M. J. Bae and J. C. Lim, Korean Chem. Eng. Res., 47, 24 (2009).
  13. M. J. Bae and J. C. Lim, Korean Chem. Eng. Res., 47, 46 (2009).
  14. M. J. Bae and J. C. Lim, J. Korean Ind. Eng. Chem., 20, 473 (2009).
  15. S. Lee, B. J. Kim, J. G. Lee, and J. C. Lim, Appl. Chem. Eng., 22, 37 (2011).
  16. US Patent 7,538,248 (2009).
  17. D. S. Han, K. M. Yoo, J. S. Park, G. Y. Chi, K. M. Lee, and J. C. Lim, Applied Chemistry, 11, 229 (2007). https://doi.org/10.1002/jctb.5010110701
  18. K. Rendall, G. J. T. Tiddy, and M. A. Trevethan, J. Colloid Interface Sci., 98, 565 (1984) https://doi.org/10.1016/0021-9797(84)90183-8
  19. H. Hoffmann, C. Thunig, and C. A. Miller, Colloid Surf. A: Physicochem. Eng. Aspects, 67, 223 (1992).
  20. Y. C. Ro and K. D. Nam, J. Korean Ind. Eng. Chem., 5, 749 (1994).
  21. M. J. Rosen, T. Gao, Y. Nakasuji, and A. Masuyama, Colloid Surf. A: Physicochem. Eng. Aspects, 88, 1 (1994). https://doi.org/10.1016/0927-7757(94)80080-4
  22. M. J. Rang, J. C. Lim, C. A. Miller, C. Thunig, and H. H. Hoffmann, J. Colloid Interface Sci., 175, 440 (1995). https://doi.org/10.1006/jcis.1995.1474
  23. I. Harwigsson, F. Tiberg, and Y. Chevalier, J. Colloid Interface Sci., 183, 380 (1996). https://doi.org/10.1006/jcis.1996.0560
  24. P. D. Maria, A. Fontana, C. Gasbarri, and G. Siani, Tetrahedron, 61, 7176 (2005). https://doi.org/10.1016/j.tet.2005.05.035
  25. J. C. Lim and D. S. Han, Colloid Surf. A: Physicochem. Eng. Aspects, 389, 166 (2011). https://doi.org/10.1016/j.colsurfa.2011.08.034
  26. J. S. Kim, J. S. Park, and J. C. Lim, J. Korean Ind. Eng. Chem., 20, 9 (2009).
  27. J. S. Kim, J. S. Park, and J. C. Lim, Korean Chem. Eng. Res., 47, 31 (2009).
  28. J. S. Kim and J. C. Lim, J. Korean Ind. Eng. Chem., 20, 479 (2009).
  29. J. S. Kim and J. C. Lim, Korean Chem. Eng. Res., 47, 38 (2009).
  30. T. Y. Chiu and A. E. James, Colloid Surf. A: Physicochem, Eng. Aspects, 280, 58 (2006). https://doi.org/10.1016/j.colsurfa.2006.01.030
  31. M. W. Jeong, S. G. Oh, and Y. C. Kim, Colloid Surf. A: Physicochem. Eng. Aspects, 181, 247 (2001). https://doi.org/10.1016/S0927-7757(00)00796-2