DOI QR코드

DOI QR Code

5-Aminoisoquinolinone Reduces the Expression of Vascular Endothelial Growth Factor-C via the Nuclear Factor-kappa B Signaling Pathway in CT26 Cells

  • Wu, Wei-Qiang (Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University) ;
  • Fauzee, Nilufer Jasmine Selimah (Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University) ;
  • Wang, Ya-Lan (Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University)
  • 발행 : 2012.03.31

초록

Objective: VEGF-C has recently been identified as a key molecule which is involved in tumor lymphangiogenesis. The aim of this research was to investigate the role of PARP-1 inhibition in the regulation of VEGF-C expression in CT26 cells. Methods: CT26 cells were treated with or without the PARP-1 inhibitor 5-aminoisoquinolinone (5-AIQ). The expression of PARP-1, NF-kB, and VEGF-C proteins in CT26 cells was measured by Western blot analysis and the VEGF-C mRNA level was determined by reverse transcription polymerase chain reaction (RT-PCR). CT26-secreted VEGF-C was detected by enzyme-linked immunosorbent assay (ELISA). Results: The results of Western blot analysis showed that the expression levels of PARP-1, NF-kB, and VEGF-C were reduced in 5-AIQ treated CT26 cells and the levels of VEGF-C mRNA in 5-AIQ treated CT26 were significantly lower than t in 5-AIQ-untreated cells (P<0.05). The concentrations of CT26-secreted VEGF-C were also dramatically decreased (P<0.05). Conclusion: Here, we provide evidence for the first time that PARP-1 inhibition dramatically reduces VEGF-C expression via the nuclear factor NF-kB signaling pathway. We therefore propose that PARP-1 inhibition has an anti-lymphangiogenic effect and may contribute to the prevention of metastatic dissemination via the lymphatic system.

과제정보

연구 과제 주관 기관 : National Nature Science Foundation of China (NSFC)

참고문헌

  1. Chen Z, Varney ML, Backora MW, et al (2005). Downregulation of vascular endothelial cell growth factor-C expression using small interfering RNA vectors in mammary tumors inhibits tumor lymphangiogenesis and spontaneous metastasis and enhances survival. Cancer Res, 65, 9004-11. https://doi.org/10.1158/0008-5472.CAN-05-0885
  2. Chilov D, Kukk E, Taira S, et al (1997). Genomic organization of human and mouse genes for vascular endothelial growth factor C. J Biol Chem, 272, 25176-83. https://doi.org/10.1074/jbc.272.40.25176
  3. Cuzzocrea S, Mazzon E, Di Paola R, et al (2004). 5-Aminoisoquinolinone reduces colon injury by experimental colitis. Naunyn Schmiedebergs Arch Pharmacol, 370, 464- 73. https://doi.org/10.1007/s00210-004-1002-x
  4. Diefenbach J, Bürkle A (2005). Introduction to poly (ADPribose) metabolism. Cell Mol Life Sci, 62, 721-30. https://doi.org/10.1007/s00018-004-4503-3
  5. Di Paola R, Mazzon E, Muia C, et al (2007). 5-Aminoisoquinolin- 1(2H)-one, a water-soluble poly (ADP-ribose) polymerase (PARP) inhibitor reduces the evolution of experimental periodontitis in rats. J Clin Periodontol, 34, 95-102. https://doi.org/10.1111/j.1600-051X.2006.01016.x
  6. Fauzee NJS, Pan J, Wang YL (2010). PARP and PARG inhibitorsnew therapeutic targets in cancer treatment. Pathol Oncol Res, 16, 469-78 https://doi.org/10.1007/s12253-010-9266-6
  7. Fauzee NJS, Qiaozhuan L, Wang YL, et al (2012). silencing poly (ADP-Ribose) glycohydrolase (PARG) expression inhibits growth of human colon cancer cells in vitro via PI3K/Akt/ $NF_{\kappa}-B$ pathway. Pathol Oncol Res, 18, 191-9. https://doi.org/10.1007/s12253-011-9428-1
  8. Hassa PO, Haenni SS, Buerki C, et al (2005). Acetylation of poly (ADP-ribose) polymerase-1 by p300/CREB-binding protein regulates coactivation of NF-kappaB-dependent transcription. J Biol Chem, 280, 40450-64. https://doi.org/10.1074/jbc.M507553200
  9. He XW, Liu T, Xiao Y, et al (2009). Vascular endothelial growth factor-C siRNA delivered via calcium carbonate nanoparticle effectively inhibits lymphangiogenesis and growth of colorectal cancer in vivo. Cancer Biother Radiopharm, 24, 249-59. https://doi.org/10.1089/cbr.2008.0515
  10. He Y, Rajantie I, Pajusola K, et al (2005). Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res, 65, 4739-46. https://doi.org/10.1158/0008-5472.CAN-04-4576
  11. Hsieh CY, Chen CA, Chou CH, et al (2004). Overexpression of Her-2/NEU in epithelial ovarian carcinoma induces vascular endothelial growth factor C by activating NF-kappa B: implications for malignant ascites formation and tumor lymphangiogenesis. J Biomed Sci, 11, 249-59.
  12. Isabelle M, Moreel X, Gagné JP et al (2010) Investigation of PARP-1, PARP-2, and PARG interactomes by affinitypurification mass spectrometry. Proteome Sci, 8, 22. https://doi.org/10.1186/1477-5956-8-22
  13. Karpanen T, Egeblad M, Karkkainen MJ, et al (2001). Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res, 61, 1786-90.
  14. Lee HK, Lee JH, Kim M, et al (2006). Insulin-like growth factor-1 induces migration and expression of laminin-5 in cultured human corneal epithelial cell. Invest Ophthalmol Vis Sci, 47, 873-82. https://doi.org/10.1167/iovs.05-0826
  15. Li M, Threadgill MD, Wang Y, et al (2009). Poly (ADP-ribose) polymerase inhibition down-regulates expression of metastasis-related genes in CT26 colon carcinoma cells. Pathobiology, 76, 108-16. https://doi.org/10.1159/000209388
  16. Li Q, Li M, Wang YL, et al (2012). RNA interference of PARG could inhibit the metastatic potency of colon carcinoma cells via PI3-Kinase/Akt pathway. Cellular Physiol Biochem, 29, 361-72. https://doi.org/10.1159/000338491
  17. Lin J, Lalani AS, Harding TC, et al (2005). Inhibition of lymphogenous metastasis using adeno-associated virusmediated gene transfer of a soluble VEGFR-3 decoy receptor. Cancer Res, 65, 6901-9. https://doi.org/10.1158/0008-5472.CAN-05-0408
  18. Mandriota SJ, Jussila L, Jeltsch M, et al (2001). Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J, 20, 672-82. https://doi.org/10.1093/emboj/20.4.672
  19. Palfi A, Toth A, Kulcsar G, et al (2005). The role of akt and mitogen-activated protein kinase systems in the protective effect of poly (ADP-Ribose) polymerase inhibition in langendorff perfused and inisoproterenol-damaged rat hearts. J Pharmacol Exp Ther, 315, 273-82. https://doi.org/10.1124/jpet.105.088336
  20. Petrilli V, Herceg Z, Hassa PO, et al (2004). Noncleavable poly (ADP-ribose) polymerase-1 regulates the inflammation response in mice. J Clin Invest, 114, 1072-81. https://doi.org/10.1172/JCI200421854
  21. Rajesh M, Mukhopadhyay P, Godlewski G, et al (2006). Poly (ADP-ribose) polymerase inhibition decreases angiogenesis. Biochem Biophys Res Commun, 350, 1056-62. https://doi.org/10.1016/j.bbrc.2006.09.160
  22. Renyi-Vamos F, Tovari J, Fillinger J, et al (2005). Lymphangiogenesis correlates with lymph node metastasis, progno-sis, and angiogenic phenotype in human non-small cell lung cancer. Clin Cancer Res, 11, 7344-53. https://doi.org/10.1158/1078-0432.CCR-05-1077
  23. Roberts N, Kloos B, Cassella M, et al (2006). Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2. Cancer Res, 66, 2650-7. https://doi.org/10.1158/0008-5472.CAN-05-1843
  24. Rothwarf DM, Karin M (1999). The NF-kB activation pathway: a paradigm in information transfer from membrane to nucleus. Sci STKE, 5, RE1.
  25. Skobe M, Hawighorst T, Jackson DG, et al (2001). Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med, 7, 192-8. https://doi.org/10.1038/84643
  26. Sun P, Gao J, Liu YL, et al (2008). RNA interference (RNAi)- mediated vascular endothelial growth factor-C (VEGF-C) reduction interferes with lymphangiogenesis and enhances epirubicin sensitivity of breast cancer cells. Mol Cell Biochem, 308, 161-8. https://doi.org/10.1007/s11010-007-9624-1
  27. Tsai PW, Shiah SG, Lin MT, et al (2003). Up-regulation of vascular endothelial growth factor C in breast cancer cells by heregulin-beta 1. A critical role of p38/nuclear factor-kappa B signaling pathway. J Biol Chem, 278, 5750-9. https://doi.org/10.1074/jbc.M204863200
  28. Watari K, Nakao S, Fotovati A, et al (2008). Role of macrophages in inflammatory lymphangiogenesis: Enhanced production of vascular endothelial growth factor C and D through NFkappaB activation. Biochem Biophys Res Commun, 377, 826-31. https://doi.org/10.1016/j.bbrc.2008.10.077
  29. Woon ECY, Threadgill MD (2005). Poly (ADP-ribose) polymerase inhibition-where now? Curr Med Chem, 12, 2373-92. https://doi.org/10.2174/0929867054864778
  30. Zhang D, Li B, Shi J, et al (2010). Suppression of tumor growth and metastasis by simultaneously blocking vascular endothelial growth factor (VEGF)-A and VEGF-C with a receptor-immunoglobulin fusion protein. Cancer Res, 70, 2495-503. https://doi.org/10.1158/0008-5472.CAN-09-3488
  31. Zhang Q, Lu Y, Proulx ST, et al (2007). Increased lymphangiogenesis in joints of mice with inflammatory arthritis. Arthritis Res Ther, 9, R118. https://doi.org/10.1186/ar2326
  32. Zheng L, Szabo C, Kern TS (2004). Poly (ADP-ribose) polymerase is involved in the development of diabetic retinopathy via regulation of nuclear factor-kappaB. Diabetes, 53, 2960-7. https://doi.org/10.2337/diabetes.53.11.2960

피인용 문헌

  1. High Mobility Group Box-1 Promotes Inflammation-Induced Lymphangiogenesis via Toll-Like Receptor 4-Dependent Signalling Pathway vol.11, pp.4, 2016, https://doi.org/10.1371/journal.pone.0154187