DOI QR코드

DOI QR Code

MLH1 Polymorphisms and Cancer risk: a Meta-analysis Based on 33 Case-control Studies

  • Xu, Jia-Li (Department of Oncology, The First Affiliated Hospital of Nanjing Medical University) ;
  • Yin, Zhi-Qiang (Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University) ;
  • Huang, Ming-De (Department of Oncology, Huai'an No. 1 hospital affiliated to Nanjing Medical University) ;
  • Wang, Xie-Feng (Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University) ;
  • Gao, Wen (Department of Oncology, The First Affiliated Hospital of Nanjing Medical University) ;
  • Liu, Ling-Xiang (Department of Oncology, The First Affiliated Hospital of Nanjing Medical University) ;
  • Wang, Rong-Sheng (Department of Oncology, The First Affiliated Hospital of Nanjing Medical University) ;
  • Huang, Pu-Wen (Department of Oncology, The First Affiliated Hospital of Nanjing Medical University) ;
  • Yin, Yong-Mei (Department of Oncology, The First Affiliated Hospital of Nanjing Medical University) ;
  • Liu, Ping (Department of Oncology, The First Affiliated Hospital of Nanjing Medical University) ;
  • Shu, Yong-Qian (Department of Oncology, The First Affiliated Hospital of Nanjing Medical University)
  • Published : 2012.03.31

Abstract

Objective: Cumulative evidence suggests that MLH1, the key component in the mismatch pathway, plays an important role in human cancers. Two potential functional polymorphisms (-93G>A and I219V) of MLH1 have been implicated in cancer risk. The aim of this meta-analysis was to summarize the evidence for associations. Methods: Eligible studies were identified by searching the electronic literature PubMed, ScienceDirect and Embase databases for relevant reports and bibliographies. Studies were included if of case-control design investigating MLH1 polymorphisms (-93G>A and I219V) and cancer risk with sufficient raw data for analysis. Odds ratios (OR) and 95% confidence intervals (95% CI) were used to evaluate the strength of associations. Results: Our meta-analysis from 33 published case-control studies showed the variant A allele of -93G>A polymorphism to be associated with increased risk in all genetic models (AA vs. GG: OR = 1.22, 95% CI: 1.03-1.44), especially among non-Asians (AA vs. GG: OR = 1.28, 95% CI: 1.04-1.58). For the I219V polymorphism, however, there was no main effect associated with overall cancer risk in any genetic model. Conclusions: The meta-analysis suggested that the MLH1 -93G>A polymorphism may be a biomarker of cancer susceptibility. Large sample association studies and assessment of gene-to-gene as well as gene-to-environment interactions are required to confirm these findings.

Acknowledgement

Supported by : National Natural Science Funds

References

  1. Allan JM, Shorto J, Adlard J, et al (2008). MLH1 -93G>A promoter polymorphism and risk of mismatch repair deficient colorectal cancer. Int J Cancer, 123, 2456-9. https://doi.org/10.1002/ijc.23770
  2. An Y, Jin G, Wang H, et al (2008). Polymorphisms in hMLH1 and risk of early-onset lung cancer in a southeast Chinese population. Lung Cancer, 59, 164-70. https://doi.org/10.1016/j.lungcan.2007.08.003
  3. Barnes DE (2002). DNA damage: air-breaks? Curr Biol, 12, R262-4. https://doi.org/10.1016/S0960-9822(02)00788-1
  4. Beiner ME, Rosen B, Fyles A, et al (2006). Endometrial cancer risk is associated with variants of the mismatch repair genes MLH1 and MSH2. Cancer Epidemiol Biomarkers Prev, 15, 1636-40. https://doi.org/10.1158/1055-9965.EPI-06-0257
  5. Berndt SI, Platz EA, Fallin MD, et al (2007). Mismatch repair polymorphisms and the risk of colorectal cancer. Int J Cancer, 120, 1548-54. https://doi.org/10.1002/ijc.22510
  6. Bernstein C, Bernstein H, Payne CM, Garewal H (2002). DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res, 511, 145-78. https://doi.org/10.1016/S1383-5742(02)00009-1
  7. Burmester JK, Suarez BK, Lin JH, et al (2004). Analysis of candidate genes for prostate cancer. Hum Hered, 57, 172-8. https://doi.org/10.1159/000081443
  8. Campbell PT, Curtin K, Ulrich CM, et al (2009). Mismatch repair polymorphisms and risk of colon cancer, tumour microsatellite instability and interactions with lifestyle factors. Gut, 58, 661-7. https://doi.org/10.1136/gut.2007.144220
  9. Capella G, Pera G, Sala N, et al (2008). DNA repair polymorphisms and the risk of stomach adenocarcinoma and severe chronic gastritis in the EPIC-EURGAST study. Int J Epidemiol, 37, 1316-25. https://doi.org/10.1093/ije/dyn145
  10. Chen CC, Yang SY, Liu CJ, et al (2005). Association of cytokine and DNA repair gene polymorphisms with hepatitis B-related hepatocellular carcinoma. Int J Epidemiol, 34, 1310-8. https://doi.org/10.1093/ije/dyi191
  11. Chen H, Taylor NP, Sotamaa KM, et al (2007). Evidence for heritable predisposition to epigenetic silencing of MLH1. Int J Cancer, 120, 1684-8. https://doi.org/10.1002/ijc.22406
  12. Conde J, Silva SN, Azevedo AP, et al (2009). Association of common variants in mismatch repair genes and breast cancer susceptibility: a multigene study. BMC Cancer, 9, 344.
  13. Deng DJ, Zhou J, Zhu BD, et al (2003). Silencing-specific methylation and single nucleotide polymorphism of hMLH1 promoter in gastric carcinomas. World J Gastroenterol, 9, 26-9. https://doi.org/10.3748/wjg.v9.i1.26
  14. Deng G, Chen A, Pong E, Kim YS (2001). Methylation in hMLH1 promoter interferes with its binding to transcription factor CBF and inhibits gene expression. Oncogene, 20, 7120-7. https://doi.org/10.1038/sj.onc.1204891
  15. Duckett DR, Bronstein SM, Taya Y, Modrich P (1999). hMutSalpha- and hMutLalpha-dependent phosphorylation of p53 in response to DNA methylator damage. Proc Natl Acad Sci USA, 96, 12384-8. https://doi.org/10.1073/pnas.96.22.12384
  16. Egger M, Davey Smith G, Schneider M, Minder C (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315, 629-34. https://doi.org/10.1136/bmj.315.7109.629
  17. Ellison AR, Lofing J, Bitter GA (2004). Human MutL homolog (MLH1) function in DNA mismatch repair: a prospective screen for missense mutations in the ATPase domain. Nucleic Acids Res, 32, 5321-38. https://doi.org/10.1093/nar/gkh855
  18. Goodfellow PJ, Buttin BM, Herzog TJ, et al (2003). Prevalence of defective DNA mismatch repair and MSH6 mutation in an unselected series of endometrial cancers. Proc Natl Acad Sci USA, 100, 5908-13. https://doi.org/10.1073/pnas.1030231100
  19. Harfe BD, Jinks-Robertson S (2000). DNA mismatch repair and genetic instability. Annu Rev Genet, 34, 359-99. https://doi.org/10.1146/annurev.genet.34.1.359
  20. Harley I, Rosen B, Risch HA, et al (2008). Ovarian cancer risk is associated with a common variant in the promoter sequence of the mismatch repair gene MLH1. Gynecol Oncol, 109, 384-7. https://doi.org/10.1016/j.ygyno.2007.11.046
  21. Hibi K, Takahashi T, Yamakawa K, et al (1992). Three distinct regions involved in 3p deletion in human lung cancer. Oncogene, 7, 445-9.
  22. Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K (2002). A comprehensive review of genetic association studies. Genet Med, 4, 45-61. https://doi.org/10.1097/00125817-200203000-00002
  23. Hsu HS, Wen CK, Tang YA, et al (2005). Promoter hypermethylation is the predominant mechanism in hMLH1 and hMSM2 deregulation and is a poor prognostic factor in nonsmoking lung cancer. Clinical Cancer Research, 11, 5410-6. https://doi.org/10.1158/1078-0432.CCR-05-0601
  24. Hutter P, Couturier A, Rey-Berthod C (2000). Two common forms of the human MLH1 gene may be associated with functional differences. J Med Genet, 37, 776-81. https://doi.org/10.1136/jmg.37.10.776
  25. Hutter P, Wijnen J, Rey-Berthod C, et al (2002). An MLH1 haplotype is over-represented on chromosomes carrying an HNPCC predisposing mutation in MLH1. J Med Genet, 39, 323-7. https://doi.org/10.1136/jmg.39.5.323
  26. Ito E, Yanagisawa Y, Iwahashi Y, et al (1999). A core promoter and a frequent single-nucleotide polymorphism of the mismatch repair gene hMLH1. Biochem Biophys Res Commun, 256, 488-94. https://doi.org/10.1006/bbrc.1999.0368
  27. Jacob S, Praz F (2002). DNA mismatch repair defects: role in colorectal carcinogenesis. Biochimie, 84, 27-47. https://doi.org/10.1016/S0300-9084(01)01362-1
  28. Joshi AD, Corral R, Siegmund KD, et al (2009). Red meat and poultry intake, polymorphisms in the nucleotide excision repair and mismatch repair pathways and colorectal cancer risk. Carcinogenesis, 30, 472-9. https://doi.org/10.1093/carcin/bgn260
  29. Kim JC, Roh SA, Koo KH, et al (2004). Genotyping possible polymorphic variants of human mismatch repair genes in healthy Korean individuals and sporadic colorectal cancer patients. Fam Cancer, 3, 129-37.
  30. Koessler T, Oestergaard MZ, Song H, et al (2008). Common variants in mismatch repair genes and risk of colorectal cancer. Gut, 57, 1097-101. https://doi.org/10.1136/gut.2007.137265
  31. Kondo E, Suzuki H, Horii A, Fukushige S (2003). A yeast two-hybrid assay provides a simple way to evaluate the vast majority of hMLH1 germ-line mutations. Cancer Res, 63, 3302-8.
  32. Lacey JV, Jr., Yang H, Gaudet MM, et al (2011). Endometrial cancer and genetic variation in PTEN, PIK3CA, AKT1, MLH1, and MSH2 within a population-based case-control study. Gynecol Oncol, 120, 167-73. https://doi.org/10.1016/j.ygyno.2010.10.016
  33. Landi S, Gemignani F, Canzian F, et al (2006). DNA repair and cell cycle control genes and the risk of young-onset lung cancer. Cancer Res, 66, 11062-9. https://doi.org/10.1158/0008-5472.CAN-06-1039
  34. Langeberg WJ, Kwon EM, Koopmeiners JS, et al (2010). Population-based study of the association of variants in mismatch repair genes with prostate cancer risk and outcomes. Cancer Epidemiol Biomarkers Prev, 19, 258-64. https://doi.org/10.1158/1055-9965.EPI-09-0800
  35. Lau J, Antman EM, Jimenez-Silva J, et al (1992). Cumulative meta-analysis of therapeutic trials for myocardial infarction. N Engl J Med, 327, 248-54. https://doi.org/10.1056/NEJM199207233270406
  36. Lau J, Ioannidis JP, Schmid CH (1997). Quantitative synthesis in systematic reviews. Ann Intern Med, 127, 820-6. https://doi.org/10.7326/0003-4819-127-9-199711010-00008
  37. Lee KM, Choi JY, Kang C, et al (2005). Genetic polymorphisms of selected DNA repair genes, estrogen and progesterone receptor status, and breast cancer risk. Clinic Cancer Res, 11, 4620-6. https://doi.org/10.1158/1078-0432.CCR-04-2534
  38. Listgarten J, Damaraju S, Poulin B, et al (2004). Predictive models for breast cancer susceptibility from multiple single nucleotide polymorphisms. Clinic Cancer Res, 10, 2725-37. https://doi.org/10.1158/1078-0432.CCR-1115-03
  39. Lo YL, Hsiao CF, Jou YS, et al (2011). Polymorphisms of MLH1 and MSH2 genes and the risk of lung cancer among never smokers. Lung Cancer, 72, 280-6. https://doi.org/10.1016/j.lungcan.2010.10.009
  40. Luo Y, Lin FT, Lin WC (2004). ATM-mediated stabilization of hMutL DNA mismatch repair proteins augments p53 activation during DNA damage. Mol Cell Biol, 24, 6430-44. https://doi.org/10.1128/MCB.24.14.6430-6444.2004
  41. Mathonnet G, Krajinovic M, Labuda D, Sinnett D (2003). Role of DNA mismatch repair genetic polymorphisms in the risk of childhood acute lymphoblastic leukaemia. Br J Haematol, 123, 45-8. https://doi.org/10.1046/j.1365-2141.2003.04551.x
  42. Mei Q, Yan HL, Ding FX, et al (2006). Single-nucleotide polymorphisms of mismatch repair genes in healthy Chinese individuals and sporadic colorectal cancer patients. Cancer Genet Cytogenet, 171, 17-23. https://doi.org/10.1016/j.cancergencyto.2006.06.011
  43. Mrkonjic M, Roslin NM, Greenwood CM, et al (2010). Specific variants in the MLH1 gene region may drive DNA methylation, loss of protein expression, and MSI-H colorectal cancer. PLoS One, 5, e13314. https://doi.org/10.1371/journal.pone.0013314
  44. Nejda N, Iglesias D, Moreno Azcoita M, et al (2009). A MLH1 polymorphism that increases cancer risk is associated with better outcome in sporadic colorectal cancer. Cancer Genet Cytogenet, 193, 71-7. https://doi.org/10.1016/j.cancergencyto.2009.04.011
  45. Park SH, Lee GY, Jeon HS, et al (2004). -93G-->A polymorphism of hMLH1 and risk of primary lung cancer. International Journal of Cancer, 112, 678-82. https://doi.org/10.1002/ijc.20359
  46. Perera S, Mrkonjic M, Rawson JB, Bapat B (2011). Functional effects of the MLH1-93G>A polymorphism on MLH1/ EPM2AIP1 promoter activity. Oncol Rep, 25, 809-15.
  47. Picelli A, Camin M, Tinazzi M, et al (2010). Three-dimensional motion analysis of the effects of auditory cueing on gait pattern in patients with Parkinson's disease: a preliminary investigation. Neurol Sci, 31, 423-30. https://doi.org/10.1007/s10072-010-0228-2
  48. Picelli S, Zajac P, Zhou XL, et al (2010). Common variants in human CRC genes as low-risk alleles. Eur J Cancer, 46, 1041-8. https://doi.org/10.1016/j.ejca.2010.01.013
  49. Raevaara TE, Korhonen MK, Lohi H, et al (2005). Functional significance and clinical phenotype of nontruncating mismatch repair variants of MLH1. Gastroenterology, 129, 537-49.
  50. Raptis S, Mrkonjic M, Green RC, et al (2007). MLH1 -93G>A promoter polymorphism and the risk of microsatelliteunstable colorectal cancer. J Natl Cancer Inst, 99, 463-74. https://doi.org/10.1093/jnci/djk095
  51. Samowitz WS, Curtin K, Wolff RK, et al (2008). The MLH1 -93 G>A promoter polymorphism and genetic and epigenetic alterations in colon cancer. Genes Chromosomes Cancer, 47, 835-44. https://doi.org/10.1002/gcc.20584
  52. Schafmayer C, Buch S, Egberts JH, et al (2007). Genetic investigation of DNA-repair pathway genes PMS2, MLH1, MSH2, MSH6, MUTYH, OGG1 and MTH1 in sporadic colon cancer. Int J Cancer, 121, 555-8. https://doi.org/10.1002/ijc.22735
  53. Scott K, Adamson PJ, Willett EV, et al (2008). Genetic variation in genes expressed in the germinal center and risk of B cell lymphoma among Caucasians. Haematologica, 93, 1597-600. https://doi.org/10.3324/haematol.13159
  54. Shi WP, Bian JC, Jiang F, et al (2010). Study on genetic polymorphism of human mismatch repair gene hMLH1 and susceptibility of papillary thyroid carcinoma in Chinese Han people. Zhonghua Yu Fang Yi Xue Za Zhi, 44, 235-41.
  55. Shih CM, Chen CY, Lee IH, et al (2010). A polymorphism in the hMLH1 gene (-93G-->A) associated with lung cancer susceptibility and prognosis. Int J Mol Med, 25, 165-70.
  56. Smith TR, Levine EA, Freimanis RI, et al (2008). Polygenic model of DNA repair genetic polymorphisms in human breast cancer risk. Carcinogenesis, 29, 2132-8. https://doi.org/10.1093/carcin/bgn193
  57. Song H, Ramus SJ, Quaye L, et al (2006). Common variants in mismatch repair genes and risk of invasive ovarian cancer. Carcinogenesis, 27, 2235-42. https://doi.org/10.1093/carcin/bgl089
  58. Song L, Zhang XM, Wang DQ, et al (2010). Mismatch repair gene hMLH1 A655G/A polymorphism and colorectal cancer. Zhonghua Wei Chang Wai Ke Za Zhi, 13, 216-8.
  59. Surtees JA, Argueso JL, Alani E (2004). Mismatch repair proteins: key regulators of genetic recombination. Cytogenet Genome Res, 107, 146-59. https://doi.org/10.1159/000080593
  60. Tanaka Y, Zaman MS, Majid S, et al (2009). Polymorphisms of MLH1 in benign prostatic hyperplasia and sporadic prostate cancer. Biochem Biophys Res Commun, 383, 440-4. https://doi.org/10.1016/j.bbrc.2009.04.025
  61. Tulupova E, Kumar R, Hanova M, et al (2008). Do polymorphisms and haplotypes of mismatch repair genes modulate risk of sporadic colorectal cancer? Mutat Res, 648, 40-5. https://doi.org/10.1016/j.mrfmmm.2008.09.005
  62. van Roon EH, van Puijenbroek M, Middeldorp A, et al (2010). Early onset MSI-H colon cancer with MLH1 promoter methylation, is there a genetic predisposition? BMC Cancer, 10, 180. https://doi.org/10.1186/1471-2407-10-180
  63. Wang Y, Cortez D, Yazdi P, et al (2000). BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev, 14, 927-39.
  64. Whiffin N, Broderick P, Lubbe SJ, et al (2011). MLH1-93G > A is a risk factor for MSI colorectal cancer. Carcinogenesis, Epub ahead of print.
  65. Xinarianos G, Liloglou T, Prime W, et al (2000). hMLH1 and hMSH2 expression correlates with allelic imbalance on chromosome 3p in non-small cell lung carcinomas. Cancer Res, 60, 4216-21.
  66. Zienolddiny S, Ryberg D, Gazdar AF, Haugen A (1999). DNA mismatch binding in human lung tumor cell lines. Lung Cancer, 26, 15-25. https://doi.org/10.1016/S0169-5002(99)00069-0

Cited by

  1. Association between MLH1 -93G>A Polymorphism and Risk of Colorectal Cancer vol.7, pp.11, 2012, https://doi.org/10.1371/journal.pone.0050449
  2. A meta-analysis of the association of glutathione S-transferase P1 gene polymorphism with the susceptibility of breast cancer vol.40, pp.4, 2013, https://doi.org/10.1007/s11033-012-2396-z
  3. Intronic and promoter polymorphisms of hMLH1/hMSH2 and colorectal cancer risk in Heilongjiang Province of China vol.141, pp.8, 2015, https://doi.org/10.1007/s00432-014-1898-6