DOI QR코드

DOI QR Code

MicroRNAs and Metastasis-related Gene Expression in Egyptian Breast Cancer Patients

  • Hafez, Mohamed M. (Collage of Pharmacy, Pharmacology Department, King Saud University) ;
  • Hassan, Zeinab K. (Cancer Biology Department, National Cancer Institute, Cairo University) ;
  • Zekri, Abdel Rahman N. (Cancer Biology Department, National Cancer Institute, Cairo University) ;
  • Gaber, Ayman A. (Cancer Biology Department, National Cancer Institute, Cairo University) ;
  • Rejaie, Salem S. Al (Collage of Pharmacy, Pharmacology Department, King Saud University) ;
  • Sayed-Ahmed, Mohamed M. (Collage of Pharmacy, Pharmacology Department, King Saud University) ;
  • Shabanah, Othman Al (Collage of Pharmacy, Pharmacology Department, King Saud University)
  • Published : 2012.02.29

Abstract

Aim and background: MicroRNAs (miRNAs) are a class of naturally occurring small noncoding RNAs that regulate gene expression, cell growth, differentiation and apoptosis by targeting mRNAs for translational repression or cleavage. The present study was conducted to study miRNAs in Egyptian breast cancer (BC) and their relation to metastasis, tumor invasion and apoptosis in addition to their association with the ER and PR statuses. Methods: Real Time RT-PCR was performed to identify the miRNA expression level of eight miRNAs and eight metastatic-related genes in 40 breast cancer samples and their adjacent non-neoplastic tissues. The expression levels of each miRNA relative to U6 RNA were determined using the $^{2-{\Delta}}CT$ method. Also, miRNA expression profiles of the BC and their corresponding ANT were evaluated. Results: The BC patients showed an up-regulation in miRNAs (mir-155, mir-10, mir-21 and mir-373) with an upregulation in MMP2, MMp9 and VEGF genes. We found down regulation in mir-17p, mir-126, mir-335, mir-30b and also TIMP3, TMP1 and PDCD4 genes in the cancer tissue compared to the adjacent non-neoplastic tissues. Mir -10b, mir -21, mir-155 and mir373 and the metastatic genes MMP2, MMP9 and VEGF were significantly associated with an increase in tumor size (P < 0.05). No significant difference was observed between any of the studied miRNAs regarding lymph node metastasis. Mir-21 was significantly over-expressed in ER-/PR-cases. Conclusion: Specific miRNAs (mir-10, mir-21, mir-155, mir-373, mir-30b, mir-126, mir-17p, mir-335) are associated with tumor metastasis and other clinical characteristics for BC, facilitating identification of individuals who are at risk.

Keywords

Breast cancer;MiRNA;gene expression;metastasis risk;Egypt

References

  1. Asangani IA, Rasheed SA, Nikolova DA, et al (2008). MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 27, 2128-36. https://doi.org/10.1038/sj.onc.1210856
  2. Bartels CL, Tsongalis GJ (2009). MicroRNAs: novel biomarkers for human cancer. Clin Chem, 55, 623-31. https://doi.org/10.1373/clinchem.2008.112805
  3. Borchert GM, Lanier W, Davidson BL (2006). RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol, 13, 1097-101. https://doi.org/10.1038/nsmb1167
  4. Boxler S, Djonov V, Kessler TM, et al (2010). Matrix Metalloproteinases and Angiogenic Factors. Predictors of Survival after Radical Prostatectomy for Clinically Organ- Confined Prostate Cancer? Am J Pathol, ?, ?-?. https://doi.org/10.2353/ajpath.2010.091190
  5. Burg-Roderfeld M, Roderfeld M, Wagner S, et al (2007). MMP- 9-hemopexin domain hampers adhesion and migration of colorectal cancer cells. Int J Oncol, 30, 985-92.
  6. Calin GA, Ferracin M, Cimmino A, et a. (2005). A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med, 353, 1793- 801. https://doi.org/10.1056/NEJMoa050995
  7. Chan DT, Poon WS, Chan YL, et al (2005). Temozolomide in the treatment of recurrent malignant glioma in Chinese patients. Hong Kong Med J, 11, 452-6.
  8. Chang TC, Wentzel EA, Kent OA, et al. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell, 26, 745-52. https://doi.org/10.1016/j.molcel.2007.05.010
  9. Chen LH, Chiou GY, Chen YW, et al (2010). microRNA and aging: a novel modulator in regulating the aging network. Ageing Res Rev, 9, 59-66. https://doi.org/10.1016/j.arr.2010.08.002
  10. Cheng AM, Byrom MW, Shelton J, et al (2005). Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis."Nucleic Acids Res, 33, 1290-7. https://doi.org/10.1093/nar/gki200
  11. Cho WC (2007). OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer, 6, 60. https://doi.org/10.1186/1476-4598-6-60
  12. Chu D, Zhang Z, Li Y, et al (2011). Matrix metalloproteinase-9 is associated with disease-free survival and overall survival in patients with gastric cancer. Int J Cancer, 129, 887-95. https://doi.org/10.1002/ijc.25734
  13. Cmarik JL, Min H, Hegamyer G, et al (1999). Differentially expressed protein Pdcd4 inhibits tumor promoter-induced neoplastic transformation. Proc Natl Acad Sci USA, 96, 14037-42. https://doi.org/10.1073/pnas.96.24.14037
  14. Corney DC, Nikitin AY (2008). MicroRNA and ovarian cancer. Histol Histopathol, 23, 1161-9.
  15. Croce CM (2009). Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet, 10, 704-14. https://doi.org/10.1038/nrg2634
  16. Curran S, Murray GI (2000). Matrix metalloproteinases: molecular aspects of their roles in tumour invasion and metastasis." Eur J Cancer, 36, 1621-30. https://doi.org/10.1016/S0959-8049(00)00156-8
  17. Esquela-Kerscher A and Slack FJ (2006). "Oncomirs - microRNAs with a role in cancer." Nat Rev Cancer, 6, 259-69. https://doi.org/10.1038/nrc1840
  18. Fassina G, Ferrari N, Brigati C, et al. (2000). Tissue inhibitors of metalloproteases: regulation and biological activities. Clin Exp Metastasis, 18, 111-20. https://doi.org/10.1023/A:1006797522521
  19. Frankel LB, Christoffersen NR, Jacobsen A, et al (2008). Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem, 283, 1026-33. https://doi.org/10.1074/jbc.M707224200
  20. Gregory RI, Shiekhattar R (2005). MicroRNA biogenesis and cancer. Cancer Res, 65, 3509-12. https://doi.org/10.1158/0008-5472.CAN-05-0298
  21. Gomez DE, Alonso DF, Yoshiji H, et al. (1997). Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol, 74, 111-22.
  22. Hicklin DJ, Ellis LM (2005). Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol, 23, 1011-27. https://doi.org/10.1200/JCO.2005.06.081
  23. Huang Q, Gumireddy K, Schrier M, et al (2008). The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol, 10, 202-10. https://doi.org/10.1038/ncb1681
  24. Iorio MV, Ferracin M, Liu CG, et al (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res, 65, 7065-70. https://doi.org/10.1158/0008-5472.CAN-05-1783
  25. Iorio MV, Visone R, Di Leva G, et al (2007). MicroRNA signatures in human ovarian cancer. Cancer Res, 67, 8699- 707. https://doi.org/10.1158/0008-5472.CAN-07-1936
  26. Jemal A, Siegel R, Ward E, et al (2009). Cancer statistics, 2009. CA Cancer J Clin, 59, 225-49. https://doi.org/10.3322/caac.20006
  27. Jiang J, Lee EJ, Gusev Y, et al (2005). Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucleic Acids Res, 33, 5394-403. https://doi.org/10.1093/nar/gki863
  28. Jones JL, Glynn P, Walker RA (1999). Expression of MMP-2 and MMP-9, their inhibitors, and the activator MT1-MMP in primary breast carcinomas. J Pathol, 189, 161-8. https://doi.org/10.1002/(SICI)1096-9896(199910)189:2<161::AID-PATH406>3.0.CO;2-2
  29. Kulshreshtha R, Ferracin M, Wojcik SE, et al. (2007). A microRNA signature of hypoxia. Mol Cell Biol, 27, 1859-67. https://doi.org/10.1128/MCB.01395-06
  30. Lee Y, Ahn C, Han J, et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425, 415-9. https://doi.org/10.1038/nature01957
  31. Lee Y, Kim M, Han J, et al (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO J, 23, 4051-60. https://doi.org/10.1038/sj.emboj.7600385
  32. Leupold JH, Yang HS, Colburn NH, et al (2007). Tumor suppressor Pdcd4 inhibits invasion/intravasation and regulates urokinase receptor (u-PAR) gene expression via Sp-transcription factors. Oncogene, 26, 4550-62. https://doi.org/10.1038/sj.onc.1210234
  33. Li J, Donath S, Li Y, et al (2010). miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet, 6, 1000795. https://doi.org/10.1371/journal.pgen.1000795
  34. Li T, Cao H, Zhuang J, et al (2010). Identification of miR- 130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans. Clin Chim Acta, 412, 66-70.
  35. Liu G, Huang Y, Lu X, et al (2010). Identification and characteristics of microRNAs with altered expression patterns in a rat model of abdominal aortic aneurysms. Tohoku J Exp Med, 222, 187-93. https://doi.org/10.1620/tjem.222.187
  36. Lu Z, Liu M, Stribinskis V, et al (2008). MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene, 27, 4373-9. https://doi.org/10.1038/onc.2008.72
  37. Lund E, Guttinger S, Calado A, et al (2004). Nuclear export of microRNA precursors. Science, 303, 95-8. https://doi.org/10.1126/science.1090599
  38. Ma L, Teruya-Feldstein J, Weinberg RA (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449, 682-8. https://doi.org/10.1038/nature06174
  39. Mayr C, Hemann MT, Bartel DP (2007). Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science, 315, 1576-9. https://doi.org/10.1126/science.1137999
  40. Meng F, Henson R, Wehbe-Janek H, et al (2007). MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology, 133, 647-58. https://doi.org/10.1053/j.gastro.2007.05.022
  41. Mulder JW, Kruyt PM, Sewnath M, et al (1994). Colorectal cancer prognosis and expression of exon-v6-containing CD44 proteins. Lancet, 344, 1470-2. https://doi.org/10.1016/S0140-6736(94)90290-9
  42. Negrini M, Calin GA (2008). Breast cancer metastasis: a microRNA story. Breast Cancer Res, 10, 203. https://doi.org/10.1186/bcr1856
  43. Nieves BJ, D'Amore PA, Bryan BA (2009). The function of vascular endothelial growth factor. Biofactors, 35, 332-7. https://doi.org/10.1002/biof.46
  44. Parkin DM, Bray F, Ferlay J, et al (2005). Global cancer statistics, 2002. CA Cancer J Clin, 55, 74-108. https://doi.org/10.3322/canjclin.55.2.74
  45. Parkin DM WS, Ferlay J, Teppo L (2002). Cancer incidence in five continents. Volume VIII. IARC Sci Publ, Lyon.
  46. Perry SV (2001). Vertebrate tropomyosin: distribution, properties and function. J Muscle Res Cell Motil, 22, 5-49. https://doi.org/10.1023/A:1010303732441
  47. Pyke C, Ralfkiaer E, Huhtala P, et al (1992). Localization of messenger RNA for Mr 72,000 and 92,000 type IV collagenases in human skin cancers by in situ hybridization." Cancer Res, 52, 1336-41.
  48. Raval GN, Bharadwaj S, Levine EA, et al (2003). Loss of expression of tropomyosin-1, a novel class II tumor suppressor that induces anoikis, in primary breast tumors. Oncogene, 22, 6194-203. https://doi.org/10.1038/sj.onc.1206719
  49. Reis PP, Tomenson M, Cervigne NK, et al (2010). Programmed cell death 4 loss increases tumor cell invasion and is regulated by miR-21 in oral squamous cell carcinoma. Mol Cancer, 9, 238. https://doi.org/10.1186/1476-4598-9-238
  50. Sampson VB, Rong NH, Han J, et al (2007). MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res, 67, 9762-70. https://doi.org/10.1158/0008-5472.CAN-07-2462
  51. Schmid T, Jansen AP, Baker AR, et al (2008). Translation inhibitor Pdcd4 is targeted for degradation during tumor promotion. Cancer Res, 68, 1254-60. https://doi.org/10.1158/0008-5472.CAN-07-1719
  52. Schmittgen TD, Jiang J, Liu Q, et al (2004). A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res, 32, 43. https://doi.org/10.1093/nar/gnh040
  53. Sieuwerts AM, Look MP, Meijer-van Gelder ME, et al (2006). Which cyclin E prevails as prognostic marker for breast cancer? Results from a retrospective study involving 635 lymph node-negative breast cancer patients. Clin Cancer Res, 12, 3319-28. https://doi.org/10.1158/1078-0432.CCR-06-0225
  54. Smid M, Wang Y, Zhang Y, et al (2008). Subtypes of breast cancer show preferential site of relapse. Cancer Res, 68, 3108-14. https://doi.org/10.1158/0008-5472.CAN-07-5644
  55. Talvensaari-Mattila A, Paakko P, Hoyhtya M, et al (1998). Matrix metalloproteinase-2 immunoreactive protein: a marker of aggressiveness in breast carcinoma. Cancer, 83, 1153-62. https://doi.org/10.1002/(SICI)1097-0142(19980915)83:6<1153::AID-CNCR14>3.0.CO;2-4
  56. Tavazoie SF, Alarcon C, Oskarsson T, et al (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451, 147-52. https://doi.org/10.1038/nature06487
  57. Toi M, Ishigaki S, Tominaga T (1998). Metalloproteinases and tissue inhibitors of metalloproteinases. Breast Cancer Res Treat, 52, 113-24. https://doi.org/10.1023/A:1006167202856
  58. Turpeenniemi-Hujanen T (2005). Gelatinases (MMP-2 and -9) and their natural inhibitors as prognostic indicators in solid cancers. Biochimie, 87, 287-97. https://doi.org/10.1016/j.biochi.2005.01.014
  59. Valencia-Sanchez MA, Liu J, Hannon GJ, et al (2006). Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev, 20, 515-24. https://doi.org/10.1101/gad.1399806
  60. Vandesompele J, De Preter K, Pattyn F, et al (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol, 3, 34-?.
  61. Vigorito E, Perks KL, Abreu-Goodger C, et al (2007). microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity, 27, 847-59. https://doi.org/10.1016/j.immuni.2007.10.009
  62. Vikhreva PN, Shepelev MV, Korobko EV, et al (2010). Pdcd4 tumor suppressor: properties, functions, and their application to oncology. Mol Gen Mikrobiol Virusol, ?, 3-11 (in Russian).
  63. Volinia S, Calin GA, Liu CG, et al (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA, 103, 2257-61. https://doi.org/10.1073/pnas.0510565103
  64. Wang W, Zhao J, Wang H, et al (2010). Programmed cell death 4 (PDCD4) mediates the sensitivity of gastric cancer cells to TRAIL-induced apoptosis by down-regulation of FLIP expression. Exp Cell Res, 316, 2456-64. https://doi.org/10.1016/j.yexcr.2010.05.027
  65. Wang WQ, Zhang H, Wang HB, et al (2010). Programmed cell death 4 (PDCD4) enhances the sensitivity of gastric cancer cells to TRAIL-induced apoptosis by inhibiting the PI3K/ Akt signaling pathway. Mol Diagn Ther, 14, 155-61. https://doi.org/10.1007/BF03256368
  66. Wu W, He JT, Ruan JD, et al (2008). Expression of MMP-2, MMP-9 and collagen type IV and their relationship in colorectal carcinomas. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 24, 908-9 (in Chinese).
  67. Yu K, Lee CH, Tan PH, et al (2004). A molecular signature of the Nottingham prognostic index in breast cancer. Cancer Res, 64, 2962-8. https://doi.org/10.1158/0008-5472.CAN-03-2430
  68. Zhang W, Dahlberg JE, Tam W (2007). MicroRNAs in tumorigenesis: a primer. Am J Pathol, 171, 728-38. https://doi.org/10.2353/ajpath.2007.070070
  69. Zhu S, Si ML, Wu H, et al (2007). MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem, 282, 14328-36. https://doi.org/10.1074/jbc.M611393200

Cited by

  1. Differential Distribution of miR-20a and miR-20b may Underly Metastatic Heterogeneity of Breast Cancers vol.13, pp.5, 2012, https://doi.org/10.7314/APJCP.2012.13.5.1901
  2. Cancer control and prevention vol.16, pp.4, 2013, https://doi.org/10.1097/MCO.0b013e328361dc70
  3. Expression status of let-7a and miR-335 among breast tumors in patients with and without germ-line BRCA mutations vol.395, pp.1-2, 2014, https://doi.org/10.1007/s11010-014-2113-4
  4. Upregulation of miR-372 and -373 associates with lymph node metastasis and poor prognosis of oral carcinomas vol.125, pp.11, 2015, https://doi.org/10.1002/lary.25464
  5. Pilot Study of Serum MicroRNA-21 as a Diagnostic and Prognostic Biomarker in Egyptian Breast Cancer Patients vol.19, pp.3, 2015, https://doi.org/10.1007/s40291-015-0143-6
  6. MicroRNA-21 Expression in Primary Breast Cancer Tissue Among Egyptian Female Patients and its Correlation with Chromosome 17 Aneusomy vol.19, pp.6, 2015, https://doi.org/10.1007/s40291-015-0161-4
  7. Metastatic breast cancer: the potential of miRNA for diagnosis and treatment monitoring vol.34, pp.1, 2015, https://doi.org/10.1007/s10555-015-9551-7
  8. Over-expression of miR-10b in NPC patients: correlation with LMP1 and Twist1 vol.36, pp.5, 2015, https://doi.org/10.1007/s13277-014-3022-6
  9. The novel role of miRNAs for tamoxifen resistance in human breast cancer vol.72, pp.13, 2015, https://doi.org/10.1007/s00018-015-1887-1
  10. microRNAs in breast cancer: regulatory roles governing the hallmarks of cancer vol.91, pp.2, 2015, https://doi.org/10.1111/brv.12176
  11. MiR-126 Regulates the ERK Pathway via Targeting KRAS to Inhibit the Glioma Cell Proliferation and Invasion vol.54, pp.1, 2017, https://doi.org/10.1007/s12035-015-9654-8
  12. Age-related microRNAs in older breast cancer patients: biomarker potential and evolution during adjuvant chemotherapy vol.18, pp.1, 2018, https://doi.org/10.1186/s12885-018-4920-6
  13. The role of microRNAs regulating the expression of matrix metalloproteinases (MMPs) in breast cancer development, progression, and metastasis vol.234, pp.5, 2018, https://doi.org/10.1002/jcp.27445