DOI QR코드

DOI QR Code

Control of Particle Characteristics in the Preparation of TiO2 Nano Particles Assisted by Microwave

  • Received : 2011.12.26
  • Accepted : 2012.02.21
  • Published : 2012.05.20

Abstract

$TiO_2$ nanostructures with various morphologies like cubes, spheres, hexahedral pillars and spherical tubes were synthesized by microwave-assisted hydrothermal process. Each structure was obtained by changing the relative concentrations of titanium tetraisoproxide (TTIP), tetrabutylammonium hydroxide (TBAH) and ethanol. Scanning electron microscopy (SEM), transmission electoron microscopy (TEM), X-ray diffraction and Brunauer-Emmett-Teller (BET) surface area analysis were used to characterize the synthesized $TiO_2$ nanostructures. From these results, it has been proved that $TiO_2$ structure could be controlled to have specific morphology, size, surface area, pore volume and pore size distribution.

References

  1. Fujishima, A.; Honda, K. Nature 1972, 238, 37. https://doi.org/10.1038/238037a0
  2. Hagfeldt, A.; Gratzel, M. Chem. Rev. 1995, 95, 49. https://doi.org/10.1021/cr00033a003
  3. Hsien, Y. H.; Chang, C. F.; Chen, Y. H.; Cheng, S. Appl. Catal. B: Environ. 2001, 31, 241. https://doi.org/10.1016/S0926-3373(00)00283-6
  4. Gratzel, M. Nature 2001, 409, 575. https://doi.org/10.1038/35054655
  5. Lizama, C.; Freer, J.; Baeza, J.; Mansilla, H. D. Catal. Today 2002, 76, 235.
  6. Vadivel Murugan, A.; Violet Samuel, Ravi, V. Mater. Lett. 2006, 60, 479. https://doi.org/10.1016/j.matlet.2005.09.017
  7. Kim, Y. J.; Chai, S. Y.; Lee, W. I. Langmuir 2007, 23, 9567. https://doi.org/10.1021/la700797v
  8. Komarneni, S.; Rajha, R. K.; Katsuki, H. Mater. Chem. Phys. 1999, 61, 50. https://doi.org/10.1016/S0254-0584(99)00113-3
  9. Pol, V. G.; Langzam, Y.; Zaban, A. Langmuir 2007, 23, 11211. https://doi.org/10.1021/la7020116
  10. Addamo, M.; Bellardita, M.; Carriazo, D.; Paola, A. D.; Milioto, S.; Palmisano, L.; Rives, V. Appl. Cat. B 2008, 84, 742. https://doi.org/10.1016/j.apcatb.2008.06.007
  11. Corradi, A. B.; Bondioli, F.; Focher, B.; Ferrari, A. M.; Grippo, C.; Mariani, E.; Villa, C. J. Am. Ceram. Soc. 2005, 88, 2639. https://doi.org/10.1111/j.1551-2916.2005.00474.x
  12. Hart, J. N.; Dervini, R.; Cheng, Y. B.; Simon, G. P.; Spiccia, L. Solar Energy Materials & Solar Cells 2004, 84, 135. https://doi.org/10.1016/j.solmat.2004.02.041
  13. Wilson, G. J.; Will, G. D.; Frost, R. L.; Montgomery, S. A. J. Mater. Chem. 2002, 12, 1787. https://doi.org/10.1039/b200053a
  14. Wilson, G. J.; Matijasevich, A. S.; Mitchell, D. R. G.; Schulz, J. C.; Will, G. D. Langmuir 2006, 22, 2016. https://doi.org/10.1021/la052716j
  15. Jia, X.; He, W.; Zhang, X.; Zhao, H.; Li, Z.; Feng, Y. Nanotechnology 2007, 18, 075602. https://doi.org/10.1088/0957-4484/18/7/075602
  16. Chemseddine, A.; Moritz, T. Eur. J. Inorg. Chem. 1999, 2, 235.
  17. Yang, J.; Mei, S.; Ferreira, J. M. F. Mater. Sci. Eng. C 2001, 15, 183. https://doi.org/10.1016/S0928-4931(01)00274-0
  18. Yang, J.; Mei, S.; Ferreira, J. M. F. J. Am. Ceram. Soc. 2001, 84, 1696.
  19. Peng, Q.; Dong, Y.; Li, Y. Angew. Chem. Int. Ed. 2003, 42, 3027. https://doi.org/10.1002/anie.200250695