Preparation of Ni Nanoparticles-TiO2 Nanotube Arrays Composite and Its Application for Electrochemical Capacitor

  • He, Huichao (College of Chemistry and Chemical Engineering, Chongqing University) ;
  • Zhang, Yunhuai (College of Chemistry and Chemical Engineering, Chongqing University) ;
  • Xiao, Peng (College of Physics, Chongqing University) ;
  • Yang, Yannan (Environmental Monitoring Station of Ziyang) ;
  • Lou, Qing (College of Physics, Chongqing University) ;
  • Yang, Fei (College of Chemistry and Chemical Engineering, Chongqing University)
  • Received : 2011.11.25
  • Accepted : 2012.02.11
  • Published : 2012.05.20


Ni nanoparticles-$TiO_2$ nanotube arrays (Ni/$TiO_2NTs$) composites were prepared by pulsed electrodeposition method and subsequently characterized by means of field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). The FESEM results showed that highly dispersed Ni nanoparticles were not only loaded on the top of the $TiO_2NTs$ but also within the tubular structure, and the particle size of Ni prepared at different current amplitude (100, 200 and 300 $mA{\cdot}cm^{-2}$) was in the range of 15 to 70 nm. The electrochemical studies indicated that Ni nanoparticles loaded on the highly ordered $TiO_2NTs$ are readily accessible for electrochemical reactions, which improve the efficiency of the Ni nanoparticles and $TiO_2NTs$. A maximum specific capacitance (27.3 $^{-2}$) was obtained on the Ni/$TiO_2NTs$ composite electrode that prepared at a current of 200 $^{-2}$, and the electrode also exhibited excellent electrochemical stability.


  1. Prasad, K. R.; Miura, N. Electrochem. Commun. 2004, 6, 1004.
  2. Cao, L.; Xu, F.; Liang, Y. Y.; Li, H. L. Adv. Mater. 2004, 16, 1853.
  3. Wang, Y. G.; Li, H. Q.; Xia, Y. Y. Adv. Mater. 2006, 18, 2619.
  4. Conway, B. E. Electrochemical Supercapacitors; Scientic Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers: New York, 1999.
  5. Frackowiak, E. Phys. Chem. Chem. Phys. 2007, 9, 1774.
  6. Subramanian,V.; Zhu, H. W.; Vajtai, R.; Ajayan, P. M.; Wei, B. Q. J. Phys. Chem. B 2005, 109, 20207.
  7. Wang, Y. G.; Xia, Y. Y. Electrochim. Acta 2006, 51, 3223.
  8. Sugimoto, W.; Iwata, H.; Yasunaga, Y.; Murakami, Y.; Takasu, Y. Angew. Chem. Int. Ed. 2003, 42, 4092.
  9. Koysuren, O.; Du, C.; Pan, N.; Bayram, G. J. Appl. Polym. Sci. 2009, 113, 1070.
  10. Nam, K. W.; Kim, K. H.; Lee, E. S.; Yoon, W. S.; Yang, X. Q.; Kim, K. B. J. Power Sources 2008, 182, 642.
  11. He, K. X.; Zhang, X. G.; Li, J. Electrochim. Acta 2006, 51, 1289.
  12. Hsieh, C. T.; Chou, Y. W.; Chen, W. Y. J. Solid State Electrochem. 2008, 12, 663.
  13. Wang, D. W.; Fang, H. T.; Li, F.; Chen, Z. G.; Zhong, Q. S.; Lu, G. Q.; Cheng, H. M. Adv. Funct. Mater. 2008, 18, 3787.
  14. Ortiz, G. F.; Hanzu, I.; Djenizian, T.; Lavela, P.; Tirado, J. L.; Knauth, P. Chem. Mater. 2009, 21, 63.
  15. Gong, D.; Grimes, C. A.; Varghese, O. K.; Hu, W.; Singh, R. S.; Chen, Z.; Dickey, E. C. J. Mater. Res. 2001, 16, 3331.
  16. Zhang, Y. H.; Yang, Y. N.; Xiao, P.; Zhang, X. N.; Lu, L.; Li, L. Mater. Lett. 2009, 63, 2429.
  17. Puippe, J. C.; Ibl, N. J. Appl. Electrochem. 1980, 10, 775.
  18. Yoshimura, S.; Chida, S.; Sato, E.; Kubota, N. Metal Finish. 1986, 84, 39.
  19. Wang, H. Z.; Kou, X. L.; Zhang, L.; Li, J. G. Mater. Res. Bull. 2008, 43, 3529.
  20. Kalu, E. E.; Nwoga, T. T.; Srinivasan, V.; Weidner, J. W. J. Power Sources 2001, 92, 163.
  21. Frackowiak, E.; Beguin, F. Carbon 2001, 39, 937.
  22. Tai, Y. L.; Teng, H. Carbon 2004, 42, 2329.
  23. Ragan, D. D.; Svedlindh, P.; Granqvist, C. G. Sol. Energy Mater. Sol. Cells 1998, 54, 247.
  24. Wang, Y. G.; Zhang, X. G. J. Electrochem. Soc. 2005, 152, A671.