Performance comparison of passive control schemes for the numerically improved ASCE cable-stayed bridge model

  • Received : 2011.06.01
  • Accepted : 2011.12.05
  • Published : 2012.04.25


The benchmark on the ASCE cable-stayed bridge has gathered since its proposal the interest of many specialists in the field of the structural control and the dynamic response of long span bridges. Starting from the original benchmark statement in the MATLAB framework, a refined version of the bridge model is developed in the ANSYS commercial finite element environment. A passive structural control system is studied through non linear numerical analyses carried out in time domain for several seismic realizations in a multiple support framework. An innovative electro-inductive device is considered. Its positive performance is compared with an alternative version considering traditional metallic dampers.


Grant : Dynamic response of linear and nonlinear structures: modelling, testing and identification

Supported by : MIUR (Ministry of Education, University and Research)


  1. Ansys Academic Research, Release 11.0, Ansys Inc, USA.
  2. Bontempi, F., Casciati, F. and Giudici, M. (2003), "Seismic response of a cable stayed bridge: active and passive control systems (Benchmark problem)", J. Struct. Control, 10(3-4), 169-185.
  3. Caicedo, J.M., Dyke, S.J., Moon, S.J., Bergman, L., Turan, G. and Hague, S. (2003), "PhaseII benchmark control problem for seismic response of cable stayed bridges", J. Struct. Control, 10(3-4), 137-168.
  4. Casciati, F., Cimellaro, G.P. and Domaneschi, M. (2008), "Seismic fragility of a cable-stayed bridge when retrofitted by hysteretic devices", Comput. Struct., 86, 1769-1781.
  5. Casciati, F. and Domaneschi, M. (2007), "Semi-active electro-inductive devices: characterization and modelling", J. Vib. Control, 13(6), 815-838.
  6. Casciati, F. and Faravelli, L. (1991), Fragility analysis of complex structural systems, Taunton, Somerset, England, Research Studies Press Ltd.
  7. Clough, R.W. and Penzien, J. (1975), Dynamics of structures, McGraw-Hill, New York, N.Y.
  8. Domaneschi, M. (2006), "Structural Control of Cable-stayed and Suspended Bridges", Ph.D. Thesis, Universita degli Studi di Pavia, Pavia, Italy.
  9. Domaneschi, M. (2010), "Feasible control of the ASCE benchmark cable-stayed bridge", Struct. Control Hlth., 17, 675-693.
  10. Domaneschi, M. and Martinelli, L. (2009), "Passive and semi-active seismic protection of the ASCE cablestayed bridge", Proc. of The Twelfth International Conference on Civil, Structural and Environmental Engineering Computing (CC2009), Funchal, Madeira, Portugal, 167.
  11. Domaneschi, M. and Martinelli, L. (2011), "Optimal passive and semi-active control of a wind excited suspension bridge", Struct. Infrastruct. E., (in press). DOI: 10.1080/15732479.2010.542467.
  12. Domaneschi, M., Martinelli, L. and Romano, M. (2010), "A strategy for Modelling External User Element in ANSYS: the Bouc-Wen and the Skyhook case", Proc. of 34th IABSE Symposium 2010, Venice, Italy.
  13. Erlicher, S. and Point, N. (2004), "Thermodynamic admissibility of Bouc-Wen type hysteresis models", CR Mecanique, 332(1), 51-57.
  14. Eurocode 8 (1998), UNI ENV 1998, Design of structures for earthquake resistance.
  15. Fogazzi, P. and Perotti, F. (2000), "The dynamic response of seabed anchored floating tunnels under seismic excitation", Earthq. Eng. Struct. D., 29(3), 273-295.<273::AID-EQE899>3.0.CO;2-Z
  16. Hague, S. (1997), "Composite design for long span bridges", Proc. of the XV ASCE Structures Congress, Portland, Oregon.
  17. Hong, A.L., Ubertini, F. and Betti, R. (2009), "Wind analysis of a suspension bridge: identification and FEM simulation", J. Struct. Eng.-ASCE., 137(1).
  18. Ikhouane, F., Manosa, V. and Rodellar, J. (2005), "Adaptive control of a hysteretic structural system", Automatica, 41(2), 225-231.
  19. Ikhouane, F., Manosa, V. and Rodellar, J. (2007), "Dynamic properties of the hysteretic Bouc-Wen model", Syst. Control Lett., 56(3), 197-205.
  20. Low, T.S. and Guo, W. (1995), "Modeling of' a three-layer piezoelectric bimorph beam with hysteresis", J. Microelectromech. S., 4(4), 230-237.
  21. Luco, J.E. and Wong, H.L. (1986), "Response of a rigid foundation to a spatially random ground motion", Earthq. Eng. Struct. D., 14(6), 891-908.
  22. MATLAB, R. (2008b), The MathWorks Inc., Natick, MA.
  23. Martinelli, L., Barbella, G. and Feriani, A. (2011), "A numerical procedure for simulating the multi-support seismic response of submerged floating tunnels anchored by cables", Eng. Struct., 33(10), 2850-2860.
  24. Monti, G., Nuti, C. and Pinto, P.E. (1996), "Nonlinear response of bridges under multisupport excitation", J. Struct. Eng.-ASCE, 122(10), 1147-1159.
  25. Oppenheim, A.V. and Shafer, R.W. (2010), Discrete-time Signal Processing, Prentice Hall, ISBN-13: 978-0-13-198842-2.
  26. Shinozuka, M. (1972), "Monte carlo solution of structural dynamics", Comput. Struct., 10, 855-874.
  27. Sieffert, J.G. and Cevaer, F. (1992), Handbook of Impedance Function, Ouest Editions, Presses Academiques. ISBN 2-908261-32-4.
  28. Spencer, B.F. Jr, Dyke, S.J., Sain, M.K. and Carlson, J.D. (1997), "Phenomenological model for magnetorheological dampers", J. Eng. Mech.-ASCE, 123(3), 230-238.
  29. Spencer, B.F. Jr and Nagarajaiah, S. (2003), "State of the art of structural control", J. Struct. Eng.-ASCE, 129(7), 845-856.
  30. Ubertini, F. and Domaneschi, M. (2006), "Analytic and numeric approach to controlled cables", Proc. of GIMC2006, Univ. di Bologna, Bologna, Italy. ISBN 88-371-1621-7.
  31. Wen, Y.K. (1976), "Method for random vibration of hysteretic systems", J. Eng. Mech.-ASCE, Div-ASCE, 102(2), 249-263.

Cited by

  1. Earthquake-Resilience-Based Control Solutions for the Extended Benchmark Cable-Stayed Bridge vol.142, pp.8, 2016,
  2. Submerged Floating Tunnels under Seismic Motion: Vibration Mitigation and Seaquake effects vol.166, 2016,
  3. Refined optimal passive control of buffeting-induced wind loading of a suspension bridge vol.18, pp.1, 2014,
  4. A comprehensive approach to small and large-scale effects of earthquake motion variability 2017,
  5. Wind and earthquake protection of cable-supported bridges vol.169, pp.3, 2016,
  6. Extending the Benchmark Cable-Stayed Bridge for Transverse Response under Seismic Loading vol.19, pp.3, 2014,
  7. A case study on the application of passive control and seismic isolation techniques to cable-stayed bridges: A comparative investigation through non-linear dynamic analyses vol.99, 2015,
  8. Decision-making of alternative pylon shapes of a benchmark cable-stayed bridge using seismic risk assessment vol.11, pp.4, 2016,
  9. Passive Control System for Mitigation of Longitudinal Buffeting Responses of a Six-Tower Cable-Stayed Bridge vol.2016, 2016,
  10. Seismic Fragility Assessment of an Isolated Multipylon Cable-Stayed Bridge Using Shaking Table Tests vol.2017, 2017,
  11. Characterization, modeling and assessment of Roll-N-Cage isolator using the cable-stayed bridge benchmark vol.224, pp.3, 2013,
  12. Passive control system for seismic protection of a multi-tower cable-stayed bridge vol.6, pp.5, 2014,
  13. Multiobjective Optimal Control of Longitudinal Seismic Response of a Multitower Cable-Stayed Bridge vol.2016, 2016,
  14. Control of wind buffeting vibrations in a suspension bridge by TMD: Hybridization and robustness issues vol.155, 2015,
  15. Damage detection and localization on a benchmark cable-stayed bridge vol.8, pp.5, 2015,
  16. Designing the control law on reduced-order models of large structural systems vol.23, pp.4, 2016,
  17. Aeolic and Seismic Structural Vibrations Mitigation on Long-Span Cable-Supported Bridges vol.690-693, pp.1662-8985, 2013,