DOI QR코드

DOI QR Code

The subtle effect of integral scale on the drag of a circular cylinder in turbulent cross flow

  • Younis, Nibras (Mechanical, Automotive & Materials Engineering University of Windsor Windsor) ;
  • Ting, David S.K. (Mechanical, Automotive & Materials Engineering University of Windsor Windsor)
  • Received : 2011.04.07
  • Accepted : 2012.04.19
  • Published : 2012.11.25

Abstract

The effects of Reynolds number (Re), freestream turbulence intensity (Tu) and integral length scale (${\Lambda}$) on the drag coefficient ($C_d$) of a circular cylinder in cross flow were experimentally studied for $6.45{\times}10^3$ < Re < $1.82{\times}10^4$. With the help of orificed plates, Tu was fixed at approximately 0.5%, 5%, 7% and 9% and the normalized integral length scale (L/D) was varied from 0.35 to 1.05. Our turbulent results confirmed the general trend of decreasing $C_d$ with increasing Tu. The effectiveness of Tu in reducing $C_d$ is found to lessen with increasing ${\Lambda}$/D. Most interestingly, freestream turbulence of low Tu (${\approx}5%$) and large ${\Lambda}$/D (${\approx}1.05$) can increase the $C_d$ above the corresponding smooth flow value.

References

  1. Achenbach, E. (1971), "Influence of roughness on the cross-flow around a circular cylinder", J. Fluid Mech., 46(2), 321-335. https://doi.org/10.1017/S0022112071000569
  2. Arie, M., Kiya, M., Suzuki, Y., Hagino M. and Takahashi, K. (1981), "Characteristics of circular cylinders in turbulent flows", Bull. Japan Soc. Mech. Eng., 24(190), 640-647. https://doi.org/10.1299/jsme1958.24.640
  3. Bhattacharyya, S. and Singh, A.K. (2011), "Reduction in drag and vortex shedding frequency through porous sheath around a circular cylinder", Int. J. Numer. Meth. Fl., 65(6), 683-698. https://doi.org/10.1002/fld.2210
  4. Bearman, P.W. (1968), Some effects of turbulence on the flow around bluff bodies, National Physical Laboratory, Aerodynamics division, Report 1264.
  5. Blackburn, H.M. and Melbourne, W.H. (1996), "The effect of free-stream turbulence on sectional lift forces on a circular cylinder", J. Fluid Mech., 306, 267-292. https://doi.org/10.1017/S0022112096001309
  6. Bruun, H.H. and Davies, P.O. (1975), "An experimental investigation of the unsteady pressure forces on a circular cylinder in a turbulent cross flow", J. Sound Vib., 40(4), 535-559. https://doi.org/10.1016/S0022-460X(75)80062-9
  7. Cao, S., Ozono, S., Tamura, Y., Ge Y. and Kikugawa, H. (2010), "Numerical simulation of Reynolds number effects on velocity shear flow around a circular cylinder", J. Fluid. Struct., 26(5), 685-702. https://doi.org/10.1016/j.jfluidstructs.2010.03.003
  8. Choi, S.W. and Kim, H.K. (2008), "Design of aerodynamics stabilizing cables for a cable-stayed bridge during construction", Wind Struct., 11(5), 391-411. https://doi.org/10.12989/was.2008.11.5.391
  9. Coutanceau, M. and Bouard, R. (1977), "Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. I. Steady flow", J. Fluid Mech., 79(2), 231-256. https://doi.org/10.1017/S0022112077000135
  10. Darwish, M.M., El Damatty, A. and Hangan, H. (2010), "Dynamic characteristics of transmission line conductors and behaviour under turbulent downburst loading", Wind Struct., 13(4), 327-346. https://doi.org/10.12989/was.2010.13.4.327
  11. Fage, A. and Warsap, J.H. (1929), The effects of turbulence and surface roughness on the drag of a circular cylinder, Aeronautical Research Committee, Reports and Memoranda No. 1283.
  12. Fox, T.A. (1992), "End plate interference effects on the aerodynamics of a circular cylinder in uniform flow", Aeronaut. J., 96(951), 10-14.
  13. Jones, G., Cinotta, J. and Walker, R. (1969), Aerodynamic forces on a stationary and oscillating circular at high Reynolds number, NACA TR R-300.
  14. Kiya, M., Suzuki, Y., Arie, M. and Hagino, M. (1982), "A contribution to the free-stream turbulence effect on the flow past a circular cylinder", J. Fluid Mech., 115, 151-164. https://doi.org/10.1017/S002211208200069X
  15. Ko, S.C. and Graf, W.H. (1972), "Drag coefficient of cylinders in turbulent flow", J. Hydraul. Eng. - ASCE, 98(5), 897-912.
  16. Liu, R., Ting, D.S.K. and Checkel, M.D. (2007), "Constant Reynolds number turbulence downstream of an orificed perforated plate", Exp. Therm. Fluid Sci., 31(8), 897-908. https://doi.org/10.1016/j.expthermflusci.2006.09.007
  17. Moradian, N., Ting, D.S.K. and Cheng, S. (2011), "Advancing drag crisis of a sphere via the manipulation of integral length scale", Wind Struct., 14(1), 35-53. https://doi.org/10.12989/was.2011.14.1.035
  18. Mulcahy, T.M. (1984), "Fluid forces on a rigid cylinder in turbulent cross flow", Proceedings of the American Society of Mechanical Engineers, Winter Ann. Meeting, New Orleans 15-28.
  19. Ohya, Y. (2004), "Drag of circular cylinders in the atmospheric turbulence", Fluid Dyn. Res., 34, 135-144. https://doi.org/10.1016/j.fluiddyn.2003.10.002
  20. Pham, A.H., Lee, C.Y., Seo, J.H., Chun, H.H., Kim, H.J., Yoon, H.S., Kim, J.H., Park, D.W. and Park, II-R. (2010), "Laminar flow past an oscillating circular cylinder in cross flow", J. Marine Sci. Technol., 18(3), 361-368.
  21. Raeesi, A., Cheng, S. and Ting, D.S.K. (2008), "Spatial flow structure around a smooth circular cylinder in the critical Reynolds number regime under cross-flow condition", Wind Struct., 11(3), 221-240. https://doi.org/10.12989/was.2008.11.3.221
  22. Sanitjai, S. and Goldstein, R.J. (2001), "Effect of free stream turbulence on local mass transfer from a circular cylinder", Int. J. Heat Fluid Fl., 44, 2863-2875.
  23. Savkar, S.D., So, R.M. and Litzinger, T.A. (1980), Fluctuating lift and drag forces induced on large span bluff bodies in a turbulent cross flow, American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD, 9, 19-26.
  24. Schlichting, H. (1979), Boundary Layer Theory, McGraw-Hill
  25. Singh, S.P. and Mittal, S. (2005), "Flow past a cylinder: shear layer instability and drag crisis", Int. J. Numer. Meth. Fl., 47(1), 75-98. https://doi.org/10.1002/fld.807
  26. Stansby, P.K. (1974), "The effects of end plates on the base pressure coefficient of a circular cylinder", Aeronaut. J., 78, 36-37.
  27. Szepessy, S. (1993), "On the control of circular cylinder flow by end plates", Euro. J. Mech. B Fl., 12(2), 217-244.
  28. Surry, D. (1972), "Some effects of intense turbulence on the aerodynamics of a circular cylinder at subcritical Reynolds number", J. Fluid Mech., 52(3), 543-563. https://doi.org/10.1017/S0022112072001582
  29. Taneda, S. (1956), "Experimental investigation of the wake behind cylinders and plates at low Reynolds numbers", J. Phys. Soc. Jpn., 11(3), 302-307. https://doi.org/10.1143/JPSJ.11.302
  30. Wang, J.S. (2010), "Flow around a circular cylinder using a finite-volume TVD scheme based on a vector transformation approach", J. Hydrodynamics, 22(2), 221-228. https://doi.org/10.1016/S1001-6058(09)60048-2
  31. West, G.S. and Apelt, C.J. (1982), "The effects of the tunnel blockage and aspect ratio on the mean flow past a circular cylinder with Reynolds number between 104 and 10", J. Fluid Mech., 114, 361-377. https://doi.org/10.1017/S0022112082000202
  32. Yeboah, E.N., Rahai, H.R. and LaRue, J.C. (1997), The effects of external turbulence on mean pressure distribution, drag coefficient, and wake characteristics of smooth cylinders, ASME Fluids Engineering Division Summer Meeting, FEDSM'97-3167
  33. Zan, S.J. (2008), "Experiments on circular cylinders in crossflow at Reynolds numbers up to 7 million", J. Wind Eng. Ind. Aerod., 96(6-7), 880-886. https://doi.org/10.1016/j.jweia.2007.06.015
  34. Zdravkovich, M. (1997), Flow around Circular Cylinders, Oxford University Press.
  35. Zhao, M., Cheng, L. and Zhou, T. (2011), "Three-dimensional numerical simulation of oscillatory flow around a circular cylinder at right and oblique attacks", Ocean Eng., 38(17-18), 2056-2069. https://doi.org/10.1016/j.oceaneng.2011.09.007
  36. Zhang, H.Q., Fey, U., Noack, B.R., Konig, M. and Eckelmann, H. (1995), "On the transition of the cylinder wake", Physics Fluid, 7(4), 779-794. https://doi.org/10.1063/1.868601