DOI QR코드

DOI QR Code

Characteristics of α-Amylase and Protease Produced from Bacillus amyloliquefacies CNL-90 Isolated from Malt Grain

맥아에서 분리한 Bacillus amyloliquefacies CNL-90이 생산하는 α-amylase와 Protease의 특성

  • Bae, Hyoung-Churl (Lab. of Milk Food Biochemistry and Biotechnology College of Agriculture and Life Sciences Chungnam National University) ;
  • Choi, Seong-Hyun (Research Institute, KG Si-Tech.) ;
  • Na, Seuk-Han (Chung Mi Bio Inc.) ;
  • Nam, Myoung-Soo (Lab. of Milk Food Biochemistry and Biotechnology College of Agriculture and Life Sciences Chungnam National University)
  • 배형철 (충남대학교 농업생명과학대학 동물바이오시스템과학과) ;
  • 최성현 ;
  • 나석한 (청미바이오) ;
  • 남명수 (충남대학교 농업생명과학대학 동물바이오시스템과학과)
  • Received : 2012.01.30
  • Accepted : 2012.04.24
  • Published : 2012.04.30

Abstract

A bacterium, identified as $Bacillus$ $amyloliquefacies$, CNL-90 using 16S rDNA analysis, was isolated from malt grain. The optimal activities of its ${\alpha}$-amylase and protease were observed at pH 6 and $60^{\circ}C$, and at pH 6 and $50^{\circ}C$, respectively although their activities remained stable at pH 7 and $40^{\circ}C$for ${\alpha}$-amylase and at pH 7 and $50^{\circ}C$ for protease. After solid-state fermentation of $B.$ $amyloliquefacies$, CNL-90 on wheat bran for 72hr or 144hr, the ${\alpha}$-amylase and protease activities were 170,000 and 290,000 units/kg, and 290,000 and 310,000 units/kg, respectively. The viable bacterial cell counts were $1.5{\times}10^9$ CFU/g and $2.2{\times}10^9$ CFU/g at 72hr and 144hr of the solid-state fermentation, respectively. A feeding trial with a total of 127 piglets was also conducted. The animals were divided into two groups: an experimental group fed with the fermented product (63 piglets) and a control group (64 piglets). The growth rate of the experimental group was 6.66% higher than that of the control group (P<0.05). The results of this study indicate that the ${\alpha}$-amylase and protease from $B.$ $amyloliquefacies$, CNL-90 can be used for industrial applications due to their activity in production of carbohydrate hydrolysates.

Keywords

$Bacillus$ $amyloliquefacies$ CNL-90;${\alpha}$-amylase;Protease;Growth rate

References

  1. Ahn, Y-S., Kim, Y-S. and Shin, D-H. 2006. Isolation, identification, and fermentation characteristics of bacillus sp. with high protease activity from traditional Cheonggukjang. Kor. J. Food Sci. Technol. 38:82-87.
  2. Bae, H. C., Lee, J-Y. and Nam, M. S. 2008. Effect of feeding yogurt using Enterococcus faecium KHM-11 on the growth in piglet. Kor. J. Food Sci. Ani. Resour. 28:204-210.
  3. Bano, S., Qader, S. A. U., Aman, A., Syed, M. N. and Azhar, A. 2011. Purification and characterization of novel $\alpha$-amylase from Bacillus subtilis. KIBGE HAS. 12:255-261.
  4. Felsenstein, J. 1993. PHYLIP: Phylogenetic Inference Package, version 3.5. Seattle: University of Washington.
  5. Godfrey, T. and Reichelt, J. 1983. Industrial enzymology : The application of enzyme in industry. The Nature,s Press Co., Mercer, U.S.A. pp127-172.
  6. Kim, H-K., Kim, K-H., Lee, J-K., Kim, Y-O., Nam, H-S. and Oh, T-K. 1995. Characterization of thermostable protease from thermoohilic Bacillus amyloliquefaciens NS 15-4. Kor. J. Appl. Microbiol. Biotechnol. 23:322-328.
  7. Kim, H. S., Lee, K-S., So, J. H., Lee, M-S., Choi, J. H. and Yoon, K-H. 2004. Characterization of extracellular $\alpha$-galactosidase produced by Bacillus lincheniformis YB-42. Kor. J. Microbiol. Biotechnol. 32:128-134.
  8. Kunitz, M. 1947. Crystalline soybean trypsin inhibitor. II. General properties. J. Gen Physiol. 30:291-297. https://doi.org/10.1085/jgp.30.4.291
  9. Lee, W. S., Lee, B. K., Kim, J. Y., Kim, J. S., Lee, S. Y., Oh, S. T., Ahn, B. K., Hwang, Y. B., Sim, S. K., Kim, D. G. and Kang, C. W. 2010. Effects of three strains of bacillus subtilis supplemented to diets on egg quality, intestinal microflora and tibia in the late stage of laying hens. J. Anim. Sci. Techno. 52:389-398. https://doi.org/10.5187/JAST.2010.52.5.389
  10. Murray, R. G. E., Brenner, D. J., Bryant, M. P., Holt, J. G., Kreig, N. R., Moulder, J. W., Pfenning, N., Sneath, P. H. A. and Staley, J. T. 1986. Bergey's Manual of Systematic Bacteriology. 2:1104-1139.
  11. Na, S. H., Choi, S. H., Renchinthand, G., Bae, H. C. and Nam, M. S. 2008. Effects of feeding fermented colostrum feed on the growth to piglets. Kor. J. Food Sci. Ani. Resour. 28:355-362.
  12. Oh, S-H. 2004. Trends in the market of the industrial enzyme. Food Industrial and nutrition. 9:10-17.
  13. Park, C-S., Min, D-K., Ahn, Y-S., Lee, J., Hong, S-K., Kim, J-H. and Kang, D-K. 2002. Isolation and characterization of soy protein-degrading strain, Bacillus subtilus EB464. Kor. J. Microbiol. Biotechnol. 30:210-215.
  14. Rao, M. B., Tanksale, A. M., Ghatge, M. S. and Despande, V. V. 1998. Molecular and biotechnological aspects of microbial protease. Microbiol. Mol. Biol. Rev. 62: 597-635.
  15. 김광호, 노승배, 심우만, 안용근, 오문헌, 최우영. 1992. 생화학 실험. 양서각. 서울. pp 91-94.

Cited by

  1. Physicochemical Characteristics and Biological Activities of Rice and Amaranth Fermented by Bacillus subtilis KMKW4 vol.44, pp.4, 2015, https://doi.org/10.3746/jkfn.2015.44.4.540