DOI QR코드

DOI QR Code

Effect of an Excipient on the Formation of PLGA Particles Using Supercritical Fluid

초임계 유체를 이용한 PLGA 입자 제조에 첨가제가 미치는 영향

  • Jung, In-Il (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Haam, Seung-Joo (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lim, Gio-Bin (Department of Chemical Engineering, The University of Suwon) ;
  • Ryu, Jong-Hoon (Department of Chemical Engineering, The University of Suwon)
  • 정인일 (연세대학교 화공생명공학과) ;
  • 함승주 (연세대학교 화공생명공학과) ;
  • 임교빈 (수원대학교 화학공학과) ;
  • 유종훈 (수원대학교 화학공학과)
  • Received : 2011.04.19
  • Accepted : 2011.07.26
  • Published : 2012.01.25

Abstract

In this study, we employed hydroxypropyl-${\beta}$-cyclodextrin (HP-${\beta}$-CD) as an excipient to produce poly(lactic-$co$-glycolic acid) (PLGA) fine particles by a supercritical fluid process, called aerosol solvent extraction system (ASES), and investigated the effect of HP-${\beta}$-CD content on the morphology of the particles. The influence of HP-${\beta}$-CD on the drug release characteristics of paclitaxel-loaded PLGA particles was also evaluated. Fine particles were obtained when the HP-${\beta}$-CD content in PLGA/HP-${\beta}$-CD mixtures was greater than 40% and 30%, respectively, for PLGA(75:25) and PLGA(50:50), whereas a film-like precipitate was obtained for lower HP-${\beta}$-CD content. The release rate for paclitaxel loaded PLGA(75:25)/HP-${\beta}$-CD particles was found to increase with HP-${\beta}$-CD content.

References

  1. G. S. Kwon, Polymeric Drug Delivery Systems, Taylor & Francis Group, Boca Raton, 2005.
  2. M. N. Kumar and N. Kumar, Drug Dev. Ind. Pharm., 27, 1 (2001). https://doi.org/10.1081/DDC-100000124
  3. J. H. Park, M. Ye, and K. Park, Molecules, 10, 146 (2005). https://doi.org/10.3390/10010146
  4. J. M. Anderson and M. S. Shive, Adv. Drug Del. Rev., 28, 5 (1997). https://doi.org/10.1016/S0169-409X(97)00048-3
  5. K. E. Uhrich, S. M. Cannizzaro, R. S. Langer, and K. M. Shakesheff, Chem. Rev., 99, 3181 (1999). https://doi.org/10.1021/cr940351u
  6. Y. Lu and S. C. Chen, Adv. Drug Del. Rev., 56, 1621 (2004). https://doi.org/10.1016/j.addr.2004.05.002
  7. S. Li, J. Biomed. Mat. Res., 48, 342 (1998).
  8. D. I. Lee, Y. Ling, M. H. Sung, and I. H. Park, Polymer (Korea), 31, 168 (2007).
  9. K. Mishima, Adv. Drug Del. Rev., 60, 411 (2008). https://doi.org/10.1016/j.addr.2007.02.003
  10. A. Breitenbach, D. Mohr, and T. Kissel, J. Control. Release, 63, 53 (2000). https://doi.org/10.1016/S0168-3659(99)00173-X
  11. F. Miguel, A. Martin, F. Mattea, and M. J. Cocero, Chem. Eng. Proc., 47, 1594 (2008). https://doi.org/10.1016/j.cep.2007.07.008
  12. L. Y. Lee, C. H. Wang, and K. A. Smith, J. Control. Release, 125, 96 (2008). https://doi.org/10.1016/j.jconrel.2007.10.002
  13. C. S. Connon, R. F. Falk, and T. W. Randolph, Macromolecules, 32, 1890 (1999). https://doi.org/10.1021/ma9813035
  14. D. Liu and D. L. Tomasko, J. Supercrit. Fluids, 39, 416 (2007). https://doi.org/10.1016/j.supflu.2006.02.014
  15. A. J. Thote and R. B. Gupta, Biol. Med., 1, 85 (2005).
  16. Y. Kang, G. Yin, P. Ouyang, Z. Huang, Y. Yao, X. Liao, A. Chen, and X. Pu, J. Colloid Interface Sci., 322, 87 (2008). https://doi.org/10.1016/j.jcis.2008.02.031
  17. R. Challa, A. Ahuja, J. Ali, and R. K. Khar, AAPS Pharm. Sci. Tech., 6, E329 (2005). https://doi.org/10.1208/pt060243
  18. L. Liu and Q.-X. Guo, J. Incl. Phenom. Macrocycl. Chem., 42, 1 (2002). https://doi.org/10.1023/A:1014520830813
  19. K.-M. Shin, T. Dong, Y. He, and Y. Inoue, J. Polym. Sci. Part B: Polym. Phys., 43, 1433 (2005). https://doi.org/10.1002/polb.20449
  20. M. Ceccato, P. L. Nostro, and P. Baglioni, Langmuir, 13, 2436 (1997). https://doi.org/10.1021/la9609231
  21. D. M. Xie, K. S. Yang, and W. X. Sun, Curr. Appl. Phys., 7S1, e15 (2007).
  22. X. Li and J. Li, J. Biomed. Mater. Res. Part A, 86A, 1055 (2007).
  23. J. Li, X. Li, X. Ni, X. Wang, H. Li, and Z. Zhou, Key Eng. Mater., 288, 117 (2005). https://doi.org/10.4028/www.scientific.net/KEM.288-289.117
  24. M. Constantin, G. Fundueanu, F. Bortolotti, R. Cortesi, P. Ascenzic, and E. Menegatti, Int. J. Pharm., 285, 87 (2004). https://doi.org/10.1016/j.ijpharm.2004.07.025
  25. R. Rajasingam, L. Lioe, Q. T. Pham, and F. P. Lucien, J. Supercrit. Fluids, 31, 227 (2004). https://doi.org/10.1016/j.supflu.2003.12.003
  26. I. D. Marco and E. Reverchon, Powder Tech., 183, 239 (2008). https://doi.org/10.1016/j.powtec.2007.07.038
  27. O. R. Davies, A. L. Lewis, M. J. Whitaker, H. Tai, K. M. Shakesheff, and S. M. Howdle, Adv. Drug Del. Rev., 60, 373 (2008). https://doi.org/10.1016/j.addr.2006.12.001
  28. M. Turk, G. Upper, M. Steurenthaler, K. Hussein, and M. A. Wahl, J. Supercrit. Fluids, 39, 435 (2007). https://doi.org/10.1016/j.supflu.2006.02.009
  29. S. K. Dordunoo and H. M. Burt, Inter. J. Pharm., 133, 191 (1996). https://doi.org/10.1016/0378-5173(96)04443-2
  30. T. Cserhati, E. Forgacs, and J. Hollo, J. Pharm. Biomed. Anal., 13, 533 (1995). https://doi.org/10.1016/0731-7085(95)01263-K