Enhancement of Solvent-Resistance by Forming Interpenetrating Network for High-Performance Polymer Field-Effect Transistors

고분자 네트워크 구조를 활용한 박막 트랜지스터의 용매안정성 향상에 관한 연구

  • Seo, Eunsuk (Department of Chemical & Biological Engineering, Hanbat National University) ;
  • Lee, Junghwi (Department of Chemical & Biological Engineering, Hanbat National University) ;
  • Min, Hong-Gi (Department of Chemical & Biological Engineering, Hanbat National University) ;
  • Lee, Hwa Sung (Department of Chemical & Biological Engineering, Hanbat National University)
  • 서은숙 (한밭대학교 화학생명공학과) ;
  • 이정휘 (한밭대학교 화학생명공학과) ;
  • 민홍기 (한밭대학교 화학생명공학과) ;
  • 이화성 (한밭대학교 화학생명공학과)
  • Received : 2012.04.30
  • Accepted : 2012.06.02
  • Published : 2012.06.30


To enhance the solvent-resistance of polymer semiconductor film in organic field-effect transistors, bis(trichlorosily)hexane (BTH) as a cross-linkable agent was mixed with polymer semiconductors, poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-bithiophene] (F8T2) and poly(3-hexylthiophene) (P3HT). The solvent-resistance was dramatically enhanced in both the F8T2/BTH and P3HT/BTH cases, even for the 1% addition of BTH. However, clear differences in the field-effect mobilities with increasing BTH-blend ratio were observed between the F8T2 and the P3HT cases. For the F8T2-FETs, the field-effect mobility was maintained by level of 90% at the 1% BTH-blend ratio, and decreased gradually above 1% blend ratio. In contrast, the field-effect mobilities of P3HT-FETs were dramatically decreased by blending the BTH, although the solvent-resistance was increased. This obvious difference is a result of the difference in crystalline properties between the amorphous F8T2 and the crystalline P3HT. This approach to improve the solvent-resistance of polymer films provides a facile method for the enhancement of the environmental stability in response to humidity and oxygen.



Supported by : 한밭대학교


  1. C. N. Dellericerche, "A Bright Future for Organic Fieldeffect Transistors", Nature, 2006, 5, 605-613.
  2. G. Malliaras and R. H. Friend, "An Organic Electronics Primer", Phys Today, 2005, 58, 53-58.
  3. S. R. Forrest, "The Path to Ubiquitous and Low-cost Organic Electronic Appliances on Plastic", Nature, 2004, 428, 911-918.
  4. C. Biswas and Y. H. Lee, "Graphene versus Carbon Nanotubes in Electronic Devices", Adv Funct Mater, 2011, 21, 3806-3826.
  5. H. S. Lee, D. H. Kim, J. H. Cho, M. Hwang, Y. Jang, and K. Cho, "Effect of the Phase States of Self-Assembled Monolayers on Pentacene Growth and Thin-Film Transistors", J Am Chem Soc, 2008, 130, 10556-10564.
  6. A. Zen, M. Saphiannikova, D. Neher, J. Grenzer, S. Grigorian, U. Pietsch, U. Asawapirom, S. Janietz, U. Scherf, I. Lieberwirth, and G. Wegner, "Effect of Molecular Weight on the Structure and Crystallinity of Poly(3-hexylthiophene)", Macromolecules 2006, 39, 2162-2171.
  7. H. Pan, Y. Li, Y. Wu, P. Liu, B. S. Ong, S. Zhu, and G. Xu, "Low-Temperature, Solution-Processed, High-Mobility Polymer Semiconductors for Thin-Film Transistors", J Am Chem Soc, 2007, 129, 4112-4113.
  8. M. Kitamural and Y. Arakawaj, "Pentacene-based Organic Field-effect Transistors", J Phys: Condens Matt, 2008, 20, 184011-1-184011-16.
  9. S. Allard, M. Forster, B. Souharce, H. Thiem, and U. Scherf, "Organic Semiconductors for Solution-Processable Field- Effect Transistors (OFETs)", Angew Chem Int Ed, 2008, 47, 4070-4098.
  10. D. A. da Silva Filho, E.-G. Kim, and J.-L. Bredas, "Transport Properties in the Rubrene Crystal: Electronic Coupling and Vibrational Reorganization Energy", Adv Mater, 2005, 17, 1072-1076.
  11. B. de Boer and A. Facchetti, "Semiconducting Polymeric Materials", Polym Rev, 2008, 48, 423-431.
  12. Z. Bao, "Materials and Fabrication Needs for Low-cost Organic Transistor Circuits", Adv Mater, 2000, 12, 227-230.<227::AID-ADMA227>3.0.CO;2-U
  13. Y. D. Park, J. A. Lim, Y. Jang, M. Hwang, H. S. Lee, H.-J. Lee, J.-B. Baek, and K. Cho, "Enhancement of the Fieldeffect Mobility of Poly(3-hexylthiophene)/functionalized Carbon Nanotube Hybrid Transistors", Organ Electro, 2008, 9, 317-322.
  14. J. A. Lim, J. H. Kim, L. Qiu, W. H. Lee, H. S. Lee, D. Kwak, and K. Cho, "Inkjet-printed Single-droplet Organic Transistors Based on Semiconductor Nanowires Embedded in Insulating Polymers", Adv Funct Mater, 2010, 20, 3292- 3297.
  15. L. Kinder, J. Kanicki, J. Swensen, and P. Petroff, "Structural Ordering in F8T2 Polyfluorene Thin Film Transistors", Proc of SPIE, 2003, 5217, 35-42.
  16. J. Swensen, J. Kanicki, and A. J. Heeger, "Influence of Gate Dielectrics on the Electrical Properties of F8T2 Polyfluorene Thin-film Transistors", Proc of SPIE, 2003, 5217, 159-166.
  17. C. D. Dimitrakopoulos and D. J. Mascaro, "Organic Thin Film Transistors: A Review of Recent Advances", IBM J Res Dev, 2001, 45, 11-27.
  18. L.-L. Chua, P. K. H. Ho, H. Sirringhaus, and R. H. Friend, "Observation of Field-Effect Transistor Behavior at Self- Organized Interfaces", Adv Mater, 2004, 16, 1609-1615.
  19. S. H. Park, H. S. Lee, J.-D. Kim, D. W. Breiby, E. Kim, Y. D. Park, D. Y. Ryu, D. R. Lee, and J. H. Cho, "A Polymer Brush Organic Interlayer Improves the Overlying Pentacene Nanostructure and Organic Field-effect Transistor Performance", J Mater Chem, 2011, 21, 15580-15586.
  20. Y. D. Park, J. H. Cho, D. H. Kim, Y. Jang, H. S. Lee, K. Ihm, T.-H. Kang, and K. Cho, "Energy-Level Alignment at Interfaces Between Gold and Poly(3-hexylthiphene) Films with Two Different Molecular Structures", Electrochem Solid-State Lett, 2006, 9, G317-G319.