Net Methane Oxidation Performance of Anaerobic Sewage Sludge

  • Yi, Taewoo (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Kim, Tae Gwan (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Lee, Eun-Hee (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Lee, Jung-Hee (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
  • Received : 2011.12.19
  • Accepted : 2012.06.18
  • Published : 2012.10.28


The anaerobic oxidation of methane (AOM) in anaerobic sewage sludge was characterized. The net methane oxidation was observed in samples amended with methane plus sulfate or with methane alone, whereas methane formation was observed in the samples without methane, indicating that methane oxidation and formation occurred simultaneously. The ratio of the net methane oxidation rate to $H_2S$ formation was 100:1, suggesting that the AOM was not closely associated with sulfate reduction in the anaerobic sludge. The net AOM was positively associated with the methane concentration and sludge dilution ratio. However, the rate of AOM was negatively correlated with organic substrate (acetate) concentration. Therefore, the production and oxidation of methane could be controlled by environmental conditions and dissolved organic compounds in the bulk solution.


  1. Barnes, R. O. and E. D. Goldberg. 1976. Methane production and consumption in anoxic marine sediments. Geology 4: 297-300.<297:MPACIA>2.0.CO;2
  2. Caldwell, S. L., J. R. Laidler, E. A. Brewer, J. O. Eberly, S. C. Sandborgh, and F. S. Colwell. 2008. Anaerobic oxidation of methane: Mechanisms, bioenergetics, and the ecology of associated microorganisms. Environ. Sci. Technol. 42: 6791-6799.
  3. Deutzmann, J. S. and B. Schink. 2011. Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake. Appl. Environ. Microbiol. 77: 4429-4436.
  4. Girguis, P. R., V. J. Orphan, S. J. Hallam, and E. F. DeLong. 2003. Growth and methane oxidation rates of anaerobic methanotrophic Archaea in a continuous-flow bioreactor. Appl. Environ. Microbiol. 69: 5472-5482.
  5. Hallam, S. J., N. Putnam, C. M. Preston, J. C. Detter, D. Rokhsar, P. M. Richardson, and E. F. DeLong. 2004. Reverse methanogenesis: Testing the hypothesis with environmental genomics. Science 305: 1457-1462.
  6. Harder, J. 1997. Anaerobic methane oxidation by bacteria employing $^{14}C$-methane uncontaminated with $^{14}C$-carbon monoxide. Mar. Geol. 137: 13-23.
  7. Knittel, K. and A. Boetius. 2009. Anaerobic oxidation of methane: Progress with an unknown process. Annu. Rev. Microbiol. 63: 311-334.
  8. Knittel, K., T. Losekann, A. Boetius, R. Kort, and R. Amann. 2005. Diversity and distribution of methanotrophic archaea at cold seeps. Appl. Environ. Microbiol. 71: 467-479.
  9. Martens, C. S. and R. A. Berner. 1974. Methane production in the interstitial waters of sulfate-depleted marine sediments. Science 185: 1167-1169.
  10. Meulepas, R. J. W., C. G. Jagersma, J. Gieteling, C. J. N. Buisman, A. J. M. Stams, and P. N. L. Lens. 2009. Enrichment of anaerobic methanotrophs in sulfate-reducing membrane bioreactors. Biotechnol. Bioeng. 104: 458-470.
  11. Meulepas, R. J. W., C. G. Jagersma, Y. Zhang, M. Petrillo, H. Cai, C. J. N. Buisman, A. J. M. Stams, and P. N. L. Lens. 2010. Trace methane oxidation and the methane dependency of sulfate reduction in anaerobic granular sludge. FEMS Microbiol. Ecol. 72: 261-271.
  12. Meyerdierks, A., M. Kube, I. Kostadinov, H. Teeling, F. O. Glockner, R. Reinhardt, and R. Amann. 2010. Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environ. Microbiol. 12: 422-439.
  13. Nauhaus, K., A. Boetius, M. Krüger, and F. Widdel. 2002. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ. Microbiol. 4: 296-305.
  14. Nauhaus, K., T. Treude, A. Boetius, and M. Kruger. 2005. Environmental regulation of the anaerobic oxidation of methane: A comparison of ANME-I- and ANME-II-communities. Environ. Microbiol. 7: 98-106.
  15. Orcutt, B., V. Samarkin, A. Boetius, and S. Joye. 2009. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico. Environ. Microbiol. 10: 1108-1117.
  16. Schilov, A. E., E. M. Koldasheva, S. V. Kovalenko, N. P. Akentieva, S. D. Varfolomeyev, S. V. Kalyuzhnyi, and V. I. Sklyar. 1999. Methanogenesis is reversible: The formation of acetate in methane carboxylation by bacteria of methanogenic biocenosis. Dokl. RAN 367: 557-559.
  17. Shima, S. and R. K. Thauer. 2005. Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea. Curr. Opin. Microbiol. 8: 643-648.
  18. Thauer, R. K. and S. Shima. 2008. Methane as fuel for anaerobic microorganisms. Ann. NY Acad. Sci. 1125: 158-170.
  19. Treude, T., V. Orphan, K. Knittel, A. Gieseke, C. H. House, and A. Boetius. 2007. Consumption of methane and $CO_2$ by methanotrophic microbial mats from gas seeps of the anoxic Black sea. Appl. Environ. Microbiol. 73: 2271-2283.
  20. Zehnder, A. J. B. and T. D. Brock. 1979. Methane formation and methane oxidation by methanogenic bacteria. J. Bacteriol. 137: 420-432.
  21. Zehnder, A. J. B. and T. D. Brock. 1980. Anaerobic methane oxidation: Occurrence and ecology. Appl. Environ. Microbiol. 39: 194-204.