A New Charge Analysis Derived From the Results of Semi-Emprical Mo-Lcao Calculation



Yilmaz, Hayriye;Ceyhan, Emre Cahit;Guzel, Yahya

  • 투고 : 2011.10.12
  • 심사 : 2012.02.09
  • 발행 : 2012.04.20


In this study we present a new approach for computing the partial atomic charge derived from the wavefunctions of molecules. This charge, which we call the "y_charge", was calculated by taking into account the energy level and orbital populations in each molecular orbital (MO). The charge calculations were performed in the software, which was developed by us, developed using the C# programming language. Partial atomic charges cannot be calculated directly from quantum mechanics. According to a partitioning function, the electron density of constituent molecular atoms depends on the electrostatic attraction field of the nucleus. Taking into account the Boltzmann population of each MO as a function of its energy and temperature we obtain a formula of partial charges.


Partial atomic charges;Predictions of molecular properties;Coulomb potential


  1. Bachrach, S. M. In Reviews in Computational Chemistry; K.B. Lipkowitz, D.B. Boyd, Eds.; VCH: New York, 1993; Vol. 5, p 171.
  2. Cramer, C.; Truhlar, D. Theor. Chim. Acta 1997, 98, 206.
  3. Li, J.; Zhu, T.; Cramer, C. J.; Truhlar, D. G. New Class IV Charge Model for Extracting Accurate Partial Charges from Wave Functions. J. Phys. Chem. A 1998, 102, 1820. https://doi.org/10.1021/jp972682r
  4. Naray-Szabo, G.; Ferenczy, G. Chem. Rev. 1995, 95, 829. https://doi.org/10.1021/cr00036a002
  5. Jorgensen, W. L.; Maxwell, D. S.; Tirado, R. J. J Am Chem. Soc. 1996, 118,11225. https://doi.org/10.1021/ja9621760
  6. Maple, J. R.; Hwang, M. J.; Stockfisch, T. P.; Dinur, U.; Waldman, M.; Ewig, C. S.; Hagler, A. T. J. Comput. Chem. 1994, 15, 162. https://doi.org/10.1002/jcc.540150207
  7. Pearlman, D. A.; Kim, S. H. Biopolymers. 1985, 24, 327. https://doi.org/10.1002/bip.360240204
  8. Rappe, A. K.; Goddard, W. A. III. J. Phys. Chem. 1991, 95, 3358. https://doi.org/10.1021/j100161a070
  9. Coppens, P. Annu. Rev. Phys. Chem. 1992, 43, 663. https://doi.org/10.1146/annurev.pc.43.100192.003311
  10. Woods, R. J.; Chappelle, R. J. Mol. Struct. (Theochem) 2000, 527, 149. https://doi.org/10.1016/S0166-1280(00)00487-5
  11. Wiberg, K.; Rablen, P. J. Comput. Chem. 1993, 14, 1504. https://doi.org/10.1002/jcc.540141213
  12. Thompson, J. D.; Xidos Sonbuchner, M.; Cramer, C. J.; Truhlar, D. G. Phys. Chem. Commun. 2002, 5, 117.
  13. Williams, D. E.; Yan, J. M. In Advances in Atomic and Molecular Physics; Academic Press: San Diego, 1987; p. 87.
  14. Gussoni, M.; Ramos, M. N.; Castiglioni, C.; Zerbi, G. Chem. Phys. Lett. 1987, 142, 515. https://doi.org/10.1016/0009-2614(87)80654-1
  15. Lowdin, P. O. Adv. Quantum Chem. 1970, 5, 185; p. 8. https://doi.org/10.1016/S0065-3276(08)60339-1
  16. Reed, A. E.; Weinstock, R. B.; Weingold, F. J. Chem Phy. 1985, 83, 735. https://doi.org/10.1063/1.449486
  17. Fonseca Guerra C.; Handgraaf, J. W.; Baerends, E. J.; Bickelhaupt, F. M. J. Comp. Chem. 2004, 25, 189. https://doi.org/10.1002/jcc.10351
  18. Atkins, P. Physical Chemistry 6th ed.; W. H. Freeman, Ed.; New York, 1998; Chapter 13.
  19. Spartan'04 Windows, Wavefunction, Inc., 18401 Von Karman, Suite370 Irvine, CA 92612.
  20. Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833. https://doi.org/10.1063/1.1740588
  21. Reed, A.; Weinstock, R.; Weinhold, F. J. Chem. Phys. 1985, 83, 735. https://doi.org/10.1063/1.449486
  22. Hehre, W. J.; Radom, L.; Schleyer, R. P.; Pople, J. A. Ab initio Molecular Orbital Theory; Wiley: New York, 1986; Chapter 4.
  23. Politzer, P.; Mulliken, R. S. J. Chem. Phys. 1971, 55, 5135. https://doi.org/10.1063/1.1675638
  24. Gasteiger, J.; Marsili, M. Tetrahedron 1980, 36, 3219. https://doi.org/10.1016/0040-4020(80)80168-2