Prediction Models of P-Glycoprotein Substrates Using Simple 2D and 3D Descriptors by a Recursive Partitioning Approach

  • Joung, Jong-Young (Bioinformatics and Molecular Design Research Center) ;
  • Kim, Hyoung-Joon (Department of Biotechnology and Translational Research Center for Protein Function Control, Yonsei University) ;
  • Kim, Hwan-Mook (College of Pharmacy, Gachon University of Medicine and Science) ;
  • Ahn, Soon-Kil (Division of Life Sciences, University of Incheon) ;
  • Nam, Ky-Youb (YOUAI Co., Ltd.) ;
  • No, Kyoung-Tai (Department of Biotechnology and Translational Research Center for Protein Function Control, Yonsei University)
  • Received : 2011.10.31
  • Accepted : 2011.12.21
  • Published : 2012.04.20


P-gp (P-glycoprotein) is a member of the ATP binding cassette (ABC) family of transporters. It transports many kinds of anticancer drugs out of the cell. It plays a major role as a cause of multidrug resistance (MDR). MDR function may be a cause of the failure of chemotherapy in cancer and influence pharmacokinetic properties of many drugs. Hence classification of candidate drugs as substrates or nonsubstrate of the P-gp is important in drug development. Therefore to identify whether a compound is a P-gp substrate or not, in silico method is promising. Recursive Partitioning (RP) method was explored for prediction of P-gp substrate. A set of 261 compounds, including 146 substrates and 115 nonsubstrates of P-gp, was used to training and validation. Using molecular descriptors that we can interpret their own meaning, we have established two models for prediction of P-gp substrates. In the first model, we chose only 6 descriptors which have simple physical meaning. In the training set, the overall predictability of our model is 78.95%. In case of test set, overall predictability is 69.23%. Second model with 2D and 3D descriptors shows a little better predictability (overall predictability of training set is 79.29%, test set is 79.37%), the second model with 2D and 3D descriptors shows better discriminating power than first model with only 2D descriptors. This approach will be used to reduce the number of compounds required to be run in the P-gp efflux assay.



Supported by : Ministry for Health, Welfare & Family Affairs


  1. Kennedy, T. Drug Disc. Today 1997, 2, 436-444.
  2. van de Waterbeemd, H.; Gifford, E. Nat. Rev. DrugDisc. 2003, 2, 192-204.
  3. Chohan, K. K.; Paine, S. W.; Waters, N. J. Curr. Chem. Biol. 2008, 2, 215-228.
  4. Demel, M. A.; Schwaha, R.; Kramer, O.; Ettmayer, P.; Haaksma, E. E.; Ecker, G. F. Expert Opin. Metab. Toxicol. 2008, 4, 1167- 1180.
  5. Gottesman, M. M.; Fojo, T.; Bates, S. E. Nat. Rev. Cancer 2002, 2, 48-58.
  6. Pauli-Magnus, C.; Meier, P. J. Hepatology 2006, 44, 778-787.
  7. Higgins, C. F.; Linton, K. J. Nat. Struct. Mol. Biol. 2004, 11, 918- 926.
  8. Schinkel, A. H. Adv. Drug Deliver. Rev. 1999, 36, 179-194.
  9. Kim, R. B.; Fromm, M. F.; Wandel, C.; Leake, B.; Wood, A. J.; Roden, D. M.; Wilkinson, G. R. J. Clin. Invest. 1998, 101, 289- 294.
  10. Cabrera, M. A.; González, I.; Fernández, C.; Navarro, C.; Bermejo, M. J. Pharm. Sci. 2006, 95, 589-606.
  11. Bain, L. J.; McLachlan, J. B.; LeBlanc, G. A. Environ. Health Perspect. 1997, 105, 812-818.
  12. Litman, T.; Zeuthen, T.; Skovsgaard, T.; Stein, W. D. Biochim. Biophys. Acta 1997, 1361, 159-168.
  13. Seelig, A. Eur. J. Biochem. 1998, 251, 252-261.
  14. Penzotti, J. E.; Lamb, M. L.; Evensen, E.; Grootenhuis, P. D. J. J. Med. Chem. 2002, 45, 1737-1740.
  15. Wang, Y. H.; Li, Y.; Yang, S. L.; Yang, L. J. Chem. Inf. Model 2005, 45, 750-757.
  16. Xue, Y.; Yap, C. W.; Sun, L. Z.; Cao, Z. W.; Wang, J. F.; Chen, Y. Z. J. Chem. Inf. Comput. Sci. 2004, 44, 1497-1505.
  17. de Cerqueira Lima, P.; Golbraikh, A.; Oloff, S.; Xiao, Y.; Tropsha, A. J. Chem. Inf. Model. 2006, 46, 1245-1254.
  18. Gang, S.; Kim, H.; Oh, W.; Kim, S.; No, K. T.; Nam, K.-Y. J. Kor. Chem. Soc. 2009, 53, 653-662.
  19. Choi, I.; Kim, S. Y.; Kim, H.; Kang, N. S.; Bae, M. A.; Yoo, S. E.; Jung, J.; No, K. T. Eur. J. Med. Chem. 2009, 44, 2354-2360.
  20. Gombar, V. K.; Polli, J. W.; Humphreys, J. E.; Wring, S. A.; Serabjit-Singh, C. S. J. Pharm. Sci. 2004, 93, 957-968.
  21. Bioinformatics & Molecular Design Research Center, Seoul, Korea, PreADMET, version 2.0. 2007; available at
  22. Connolly, M. L. J. Appl. Cryst. 1983, 16, 548-558.
  23. Discovery Studio, version 2.1, 2007; Accelrys, Inc., San Diego, Calif.
  24. In, Y.; Chai, H. H.; No, K. T. J. Chem. Inf. Model. 2005, 45, 254- 263.
  25. Kim, J.; Nam, K.-Y.; Cho, K.-H.; Choi, S.-H.; Noh, J. S.; No, K. T. Bull. Korean Chem. Soc. 2003, 24(12), 1742-1750,
  26. Nam, K.-Y.; Cho, D. H.; Paek, K.; No, K. T. Chem. Phys. Lett. 2002, 364, 267-272.
  27. Accelys Pipeline Pilot, Version 7.0; 2009; available at
  28. Huang, J.; Ma, G.; Muhammad, I.; Cheng, Y. J. Chem. Inf. Model 2007, 47, 1638-1647.
  29. Xue, Y.; Li, Z. R.; Yap, C. W.; Sun, L. Z.; Chen, X.; Chen, Y. Z. J. Chem. Inf. Comput. Sci. 2004, 44, 1630-1638.
  30. Matthews, B. W. Biochim. Biophys. Acta 1975, 405, 442-451.
  31. Baldi, P.; Brunak, S.; Chauvin, Y.; Andersen, C. A. F.; Nielsen, H. Bioinformatics 2000, 16, 412-424.
  32. Landis, J. R.; Koch, G. G. Biometrics 1977, 33, 159-174.
  33. Maines, L. W.; Antonetti, D. A.; Wolpert, E. B.; Smith, C. D. Neuropharmacology 2005, 49, 610-617.
  34. Gerhard, F.; Ecker, G. F.; Stockner, T.; Chiba, P. Drug Discov. Today 2008, 13, 311-317 .
  35. Poole, K. J. Antimicrob. Chemother. 2005, 56, 20-51.
  36. Pajeva, I. K.; Wiese, M. J. Med. Chem. 2002, 45, 5671-5686.
  37. van Tellingen, O. Toxicol. Lett. 2001, 120, 31-41.
  38. Thiebaut, F.; Tsuruo, T.; Hamada, H.; Gottesman, M. M.; Pastan, I.; Willingham, M. C. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 7735-7738.
  39. Gatlik-Landwojtowicz, E.; Aanismaa, P.; Seelig, A. Biochemistry 2006, 45, 3020-3032.
  40. Romsicki, Y.; Sharom, F. J. Biochemistry 1999, 38, 6887-6896.

Cited by

  1. Computational investigations of physicochemical, pharmacokinetic, toxicological properties and molecular docking of betulinic acid, a constituent of Corypha taliera (Roxb.) with Phospholipase A2 (PLA2) vol.18, pp.1, 2018,
  2. Theoretical Prediction of the Complex P-Glycoprotein Substrate Efflux Based on the Novel Hierarchical Support Vector Regression Scheme vol.23, pp.7, 2018,