Helicobacter Pylori CagA and Gastric Carcinogenesis

  • Zheng, Ri-Nan (Department of Gastroenterology, Yanda International Hospital) ;
  • Li, Shu-Rong (Department of Gastroenterology, Yanda International Hospital) ;
  • Masahiro, Asaka (Department of Gastroenterology, Hokkaido University Graduate School of Medecine)
  • Published : 2012.12.31


Objectives: This study aimed to demonstrate the tyrosine phosphorylation motif (TPM) and 3' region structure of the Helicobacter pylori CagA gene as well as its SHP-2 binding activity in AGS cells and relation to gastric carcinogenesis. Methods: Sixteen clinical isolate H. pylori strains from eight duodenal ulcer and eight gastric adenocarcinoma patients were studied for CagA repeat sequence EPIYA motifs, C-terminal structure, and western blot analysis of CagA protein expression, translocation, and SHP-2 binding in AGS cells. Results: Except for strain 547, all strains from the gastric adenocarcinoma patients were positive for CagA by PCR and had three EPIYA copy motifs. Western blotting showed that all strains were positive for CagA protein expression (100%), CagA protein translocation (100%), and SHP-2 binding (100%). CagA protein expression was significantly higher in the gastric adenocarcinoma patients than in the duodenal ulcer patients (P=0.0023). CagA protein translocation and SHP-2 binding in the gastric adenocarcinoma patients were higher than those in the duodenal ulcer patients, but no significant differences were found between the two groups (P=0.59, P=0.21, respectively). Conclusions: The TPMs and 3' region structures of the H. pylori CagA gene in the duodenal ulcer and gastric adenocarcinoma patients have no significant differences.


  1. Safari F, Murata-Kamiya N, Saito Y, Hatakeyama M (2011). Mammalian Pragmin regulates Src family kinases via the Glu-Pro-Ile-Tyr-Ala (EPIYA) motif that is exploited by bacterial effectors. Proc Natl Acad Sci USA, 108, 14938-43.
  2. Sahara S, Sugimoto M, Vilaichone RK, et al ( 2012). Role of Helicobacter pylori cagA EPIYA motif and vacA genotypes for the development of gastrointestinal diseases in Southeast Asian countries: a meta-analysis. BMC Infect Dis, 12, 223.
  3. Stein M, Bagnoli F, Galenbeck R, et al (2002). c-Src/Lyn kinases activite Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol Microbiol, 43, 971-80.
  4. Tsutusmi R, Higashi H, Higashi M, Okada M, Hatakeyama M (2003). Attenuation of Helicobacter pylori CagA SHP-2 signaling by interaction between CagA and c-terminal Src kinase. J Biol Chem, 278, 3664-70.
  5. Xu X, Liu Z, Fang M, et al (2012). Helicobacter pylori CagA induces ornithine decarboxylase upregulation via Src/MEK/ ERK/c-Myc pathway: implication for progression of gastric diseases. Exp Biol Med (Maywood), 237, 435-41.
  6. Xue H, Liu J, Lin B, Wang Z, Sun J, Huang G (2012). A metaanalysis of interleukin-8 -251 promoter polymorphism associated with gastric cancer risk. PLoS One, 7, e28083.
  7. Yamahashi Y, Hatakeyama M (2012). PAR1b takes the stage in the morphogenetic and motogenetic activity of Helicobacter pylori CagA oncoprotein. Cell Adh Migr, 17, 1.
  8. Yamaoka Y (2012). Pathogenesis of Helicobacter pylori-Related Gastroduodenal Diseases from Molecular Epidemiological Studies. Gastroenterol Res Pract, 2012, 371503.
  9. Yamaoka Y, Kikuchi S, ElZimaity HMT, et al (2002). Importance of Helicobacter pylori oipA in clinical presentation, gastric inflammation, and mucosal interleukin 8 production. Gastroenterology, 23, 414-24.
  10. Yamaoka Y, Kodama T, Gutierrez O, et al (1999). Relationship between Helicobacter pylori iceA, cagA, and vacA status and clinical outcome: studies in four different countries. J Clin Microbiol, 37, 2274-9.
  11. Yamaoka Y, Kodama T, Kashima M, Graham DY, Sepulveda AR (1998). Variants of the 3 ' region of the CagA gene in Helicobacter pyliori isolates from patients with defferent H. pylori associated diseases. J Clin Microbiol, 36, 2258-63.
  12. Chomvarin C, Phusri K, Sawadpanich K, et al (2012), Hahnvajanawong C. Prevalence of cagA EPIYA motifs in Helicobacter pylori among dyspeptic patients in northeast Thailand. Southeast Asian J Trop Med Public Health. Jan, 43, 105-15.
  13. Epplein M, Zheng W, Xiang YB, et al (2012). Prospective study of Helicobacter pylori biomarkers for gastric cancer risk among Chinese men. Cancer Epidemiol Biomarkers Prev, 10, 3.
  14. Gobert AP, Verriere T, de Sablet T, et al (2012). Heme oxygenase-1 inhibits phosphorylation of the Helicobacter pylori oncoprotein CagA in gastric epithelial cells. Cell Microbiol, 10, 1111.
  15. Graham DY, Asaka M (2010). Eradication of gastric cancer and more efficient gastric cancer surveillance in Japan: two peas in a pod. J Gastroenterol, 45, 1-8.
  16. Hatakeyama M (2004). Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nature Reviews Cancer, 4, 688-94.
  17. Higashi H, Tsutsumi R, Fujita A, et al (2002). Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc Natl Acad Sci USA, 99, 14428-33.
  18. Higashi H, Tsutsumi R, Muto S, et al (2002). SHP-2 tyrosine phosphotase as an intracellular target of Helicobacter pylori CagA protein. Science, 295, 683-6.
  19. Lars H, Olof N, Ann H, et al (1996). The risk of stomach cancer in patients with gastric or duodenal ulcer sisease. N Engl J Med, 335, 242-9.
  20. Martinez T, Hernandez-Suarez G, Bravo MM, et al (2012). Association of interleukin-1 genetic polymorphism and CagA positive Helicobacter pylori with gastric cancer in Colombia. Rev Med Chil, 139, 313-21.
  21. Matthias S, Stefan M, Christof R, et al (2002). Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J Biol Chem, 277, 6775-8.
  22. Milehlke S, Kibler K, Kin JG, et al (1996). Allelic variation in the CagA gene of Helicobacter pylori obtained from Korea compared to the United States. Am J Gastroenerol, 91, 1322-25.
  23. Mueller D, Tegtmeyer N, Brandt S, et al (2012). c-Src and c-Abl kinases control hierarchic phosphorylation and function of the CagA effector protein in Western and East Asian Helicobacter pylori strains. J Clin Invest, 122, 553-66.
  24. Murakita H, Hirai M, Ito S, et al (1996). Cytotoxin and urease activities of Helicobacter pylori isolates from Japanese patients with atrophic gastritis or duodenal ulcer. J Gastroenterl. Hepatol, 11, 819-24.
  25. Tegtmeyer N, Wessler S, Backert S (2011). Role of the cag pathogenicity island encoded type IV secretion system in Helicobacter pylori pathogenesis. FEBS J, 278, 1190-202.
  26. Odenbreit S, Püls J, Sedlmaier B, et al (2000). Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science, 287, 1497-500.
  27. Apostolopoulos P, Vafiadis-Zouboulis I, Tzivras M, et al (2002). Helicobacter pylori (H pylori) infection in Greece: the changing prevalence during a ten-year period and its antigenic profile. BMC Gastroenterol, 2, 11.
  28. Argent RH, Kidd M, Owen RJ, et al (2004). Determinants and consequences of different levels of CagA phosphorylation for clinical isolates of Helicobacter pylori. Gastroenterology, 127, 514-23.
  29. Backert S, Ziska E, Brinkmann V, et al (2002). Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. Cell Microbiol, 2, 155-64.
  30. Cavalcante MQ, Silva CI, Braga-Neto MB, et al (2012). Helicobacter pylori vacA and cagA genotypes in patients from northeastern Brazil with upper gastrointestinal diseases. Mem Inst Oswaldo Cruz, 107, 561-3.

Cited by

  1. Diagnostic Values of Serum Levels of Pepsinogens and Gastrin-17 for Screening Gastritis and Gastric Cancer in a High Risk Area in Northern Iran vol.15, pp.17, 2014,